Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Protecting a Tsunami of Data in Hadoop HPE Security – Data Security March 2017 Increased Adoption of Big Data Across Industries European Telco: Collecting Call Data Records (CDRs) from 27 countries. Used for fault detection, roaming data, network optimization. Includes number of PI data elements Top 5 Global Car Manufacturer: Collecting sensor data from 5 million cars globally to find defects. Includes GPS location information. Top retailer: Analyze customer buying patterns, brand loyalty, detect credit card fraud, etc. Vast Quantities Of PI Data Health Insurer: Analysis sensitive customer health insurance to detect prescription medication fraud, insurance overpayments and to customize their portal. (C) 2016 Hewlett Packard Enterprise - Confidential 2 Why is securing Hadoop difficult? Rapid innovation in a well funded open source community Systems such as Hadoop do not have “Delete” or “Update” functionality Multiple feeds of data in real time from different sources with different protection needs Mainframe RDBMs MQ XML Salesforce Flat Files 3 Why is securing Hadoop difficult? Access by many different users with varying analytic needs Automatic replication of data across multiple nodes once entered into the HDFS data store Reduced control if Hadoop clusters are deployed in a cloud environment 4 Existing ways to secure Hadoop – Existing IT security – Enterprise-scale security for Apache Hadoop − Network firewalls − Apache Knox: Perimeter security − Logging and monitoring − Kerberos: Strong authentication − Configuration management − Apache Ranger: Monitoring and management Need to augment these with “data-centric” protection of data in use, in motion and at rest 5 Introducing “Data-centric” security Threats to Data Credential Compromise Traditional IT Infrastructure Security Authentication Management Data Ecosystem Security Gaps Data and applications Traffic Interceptors Middleware SSL/TLS/firewalls Security gap SQL injection, Malware Database encryption Databases Security gap Malware, Insiders Malware, Insiders SSL/TLS/firewalls File systems Data security coverage Security gap Security gap Disk encryption Storage 6 Introducing “Data-centric” security Threats to Data Credential Compromise Traditional IT Infrastructure Security Authentication Management Data Ecosystem Security Gaps HPE SecureData Data-centric Security Data and applications Middleware SSL/TLS/firewalls Security gap SQL injection, Malware Database encryption Databases Security gap Malware, Insiders Malware, Insiders SSL/TLS/firewalls File systems End-to-end Protection Traffic Interceptors Data security coverage Security gap Security gap Disk encryption Storage 7 Format-Preserving Encryption (FPE) Meet Requirements for Encryption and Pseudonymisation Format-Preserving Encryption (FPE) Credit card SSN/ID Email DOB 4171 5678 8765 4321 934-72-2356 [email protected] 31-07-1966 Full 8736 5533 4678 9453 347-98-8309 [email protected] 20-05-1972 Partial 4171 5681 5310 4321 634-34-2356 [email protected] 20-05-1972 Obvious 4171 56AZ UYTZ 4321 AZS-UD-2356 [email protected] 20-05-1972 8 Before: All applications and users have access to data HR Application Name James Potter Ryan Johnson Carrie Young Brent Warner Anna Berman SS# 385-12-1199 857-64-4190 761-58-6733 604-41-6687 416-03-4226 Analysts ETL Tool Credit Card # 37123 456789 01001 5587 0806 2212 0139 5348 9261 0695 2829 4929 4358 7398 4379 4556 2525 1285 1830 Help Desk Mainframe App Street Address 1279 Farland Avenue 111 Grant Street 4513 Cambridge Court 1984 Middleville Road 2893 Hamilton Drive DBAs Customer ID G8199143 S3626248 B0191348 G8888767 S9298273 Malware State NY NY CA CA KY Score 100 200 120 120 160 Malicious User After: Data is protected at source at “Field Level” ETL Tool HR Application Name SS# Kwfdv Cqvzgk Veks Iounrfo Pdnme Wntob Eskfw Gzhqlv Jsfk Tbluhm 161-82-1292 200-79-7127 095-52-8683 178-17-8353 525-25-2125 Analysts Credit Card # Payments App Street Address 3712 3488 7865 1001 2890 Ykzbpoi Clpppn 5587 0876 5467 0139 406 Cmxto Osfalu 5348 9212 3456 2829 1498 Zejojtbbx Pqkag 4929 4356 7432 4379 8261 Saicbmeayqw Yotv 4556 2598 7643 1830 8412 Wbbhalhs Ueyzg Help Desk DBAs Malware Customer ID State Score G7202483 S0928254 B7265029 G3951257 S6625294 NY NY CA CA KY 100 200 120 120 160 Malicious User Malicious users, DBAs and malware: only see protected data Malware Name SS# Kwfdv Cqvzgk Veks Iounrfo Pdnme Wntob Eskfw Gzhqlv Jsfk Tbluhm 161-82-1292 200-79-7127 095-52-8683 178-17-8353 525-25-2125 Credit Card # Street Address 3712 3488 7865 1001 2890 Ykzbpoi Clpppn 5587 0876 5467 0139 406 Cmxto Osfalu 5348 9212 3456 2829 1498 Zejojtbbx Pqkag 4929 4356 7432 4379 8261 Saicbmeayqw Yotv 4556 2598 7643 1830 8412 Wbbhalhs Ueyzg DBAs Customer ID State Score G7202483 S0928254 B7265029 G3951257 S6625294 NY NY CA CA KY 100 200 120 120 160 Malicious User Help desk and payments apps: operate on partially protected data Payments App Name SS# Kwfdv Cqvzgk Veks Iounrfo Pdnme Wntob Eskfw Gzhqlv Jsfk Tbluhm 161-82-1292 200-79-7127 095-52-8683 178-17-8353 525-25-2125 Credit Card # Street Address 3712 3488 7865 1001 2890 Ykzbpoi Clpppn 5587 0876 5467 0139 406 Cmxto Osfalu 5348 9212 3456 2829 1498 Zejojtbbx Pqkag 4929 4356 7432 4379 8261 Saicbmeayqw Yotv 4556 2598 7643 1830 8412 Wbbhalhs Ueyzg Help Desk Customer ID State Score G7202483 S0928254 B7265029 G3951257 S6625294 NY NY CA CA KY 100 200 120 120 160 Analysis on de-identified data Name SS# Kwfdv Cqvzgk Veks Iounrfo Pdnme Wntob Eskfw Gzhqlv Jsfk Tbluhm 161-82-1292 200-79-7127 095-52-8683 178-17-8353 525-25-2125 Card Average Score Amex M/C Visa 100 160 140 Credit Card # Street Address 3712 3488 7865 1001 2890 Ykzbpoi Clpppn 5587 0876 5467 0139 406 Cmxto Osfalu 5348 9212 3456 2829 1498 Zejojtbbx Pqkag 4929 4356 7432 4379 8261 Saicbmeayqw Yotv 4556 2598 7643 1830 8412 Wbbhalhs Ueyzg Class # of states State Average Score G S B 2 2 1 NY CA KY 150 120 160 Analysts Analysts Customer ID State Score G7202483 S0928254 B7265029 G3951257 S6625294 NY NY CA CA KY 100 200 120 120 160 Analysts Authorized applications access real data Key Management Authorized HR Application Name SS# Kwfdv Cqvzgk Veks Iounrfo Pdnme Wntob Eskfw Gzhqlv Jsfk Tbluhm 161-82-1292 200-79-7127 095-52-8683 178-17-8353 525-25-2125 Credit Card # Name James Potter Ryan Johnson Carrie Young Brent Warner Anna Berman Street Address 3712 3488 7865 1001 2890 Ykzbpoi Clpppn 5587 0876 5467 0139 406 Cmxto Osfalu 5348 9212 3456 2829 1498 Zejojtbbx Pqkag 4929 4356 7432 4379 8261 Saicbmeayqw Yotv 4556 2598 7643 1830 8412 Wbbhalhs Ueyzg Authorized Fraud Analysts Key Management Customer ID State Score G7202483 S0928254 B7265029 G3951257 S6625294 NY NY CA CA KY 100 200 120 120 160 SS# 385-12-1292 857-64-7127 761-58-8683 604-41-8353 416-03-2125 Architectures for Protecting Data in Hadoop Hadoop Cluster Upstream Applications 4 1 Hadoop jobs and analytics FPE Encrypt Data 2 Upstream Applications HDFS 5 FPE Encrypt Data 3 Upstream Applications Landing Zone ETL and batch Hadoop jobs Hive, MapReduce, etc. FPE Decrypt Data Hadoop jobs MapReduce, Sqoop, Flume FPE Encrypt Data 6 Applications, analytics and data Egress Zone ETL and batch HPE Decrypt Data Applications, analytics and data 15 Conclusion – Multi-platform enterprises adopting a data lake architecture need a cross-platform solution for protection of sensitive data – Big data partners bring comprehensive security within Hadoop, with core capabilities for authentication, authorization and auditing – Implementing data-centric security across data stores including Hadoop—protecting data at rest, in use and in motion, and maintaining the value of the data for analytics – Together enabling comprehensive security for the enterprise, and rapid and successful Hadoop adoption! 16 Thank you Contact information 17