Download Mathematics SL formula booklet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Diploma Programme
Mathematics SL formula booklet
For use during the course and in the examinations
First examinations 2014
Published March 2012
© International Baccalaureate Organization 2012
Mathematical studies SL: Formula booklet
5045
1
Contents
Prior learning
2
Topics
3
Topic 1—Algebra
3
Topic 2—Functions and equations
4
Topic 3—Circular functions and trigonometry
4
Topic 4—Vectors
5
Topic 5—Statistics and probability
5
Topic 6—Calculus
6
Mathematics SL formula booklet
1
Formulae
Prior learning
A= b × h
Area of a parallelogram
Area of a triangle
Area of a trapezium
=
A
1
(b × h)
2
=
A
1
( a + b) h
2
Area of a circle
A = πr 2
Circumference of a circle
C = 2πr
Volume of a pyramid
=
V
1
(area of base × vertical height)
3
Volume of a cuboid (rectangular prism)
V =l × w × h
Volume of a cylinder
V = πr 2 h
Area of the curved surface of a cylinder
A= 2πrh
Volume of a sphere
Volume of a cone
V=
4 3
πr
3
V=
1 2
πr h
3
Distance between two points ( x1 , y1 , z1 ) and
( x2 , y2 , z2 )
d=
Coordinates of the midpoint of a line segment
with endpoints ( x1 , y1 , z1 ) and ( x2 , y2 , z2 )
 x1 + x2 y1 + y2 z1 + z2 
, , 

2
2 
 2
Mathematics SL formula booklet
( x1 − x2 ) 2 + ( y1 − y2 ) 2 + ( z1 − z2 ) 2
2
Topics
Topic 1—Algebra
1.1
The nth term of an
arithmetic sequence
un = u1 + (n − 1)d
The sum of n terms of an
arithmetic sequence
S n=
The nth term of a
geometric sequence
un = u1r n −1
n
n
(2u1 + (n − 1)d )=
(u1 + un )
2
2
The sum of n terms of a
u1 (r n − 1) u1 (1 − r n )
, r ≠1
=
S
=
n
finite geometric sequence
r −1
1− r
1.2
The sum of an infinite
geometric sequence
S∞ =
Exponents and logarithms
ax = b ⇔
Laws of logarithms
log c a + log c b =
log c ab
a
log c a − log c b =
log c
b
log c a r = r log c a
Change of base
1.3
u1
, r <1
1− r
log b a =
x = log a b
log c a
log c b
Binomial coefficient
n
n!
  =
 r  r ! (n − r )!
Binomial theorem
 n
 n
(a + b) n = a n +   a n −1b + +   a n − r b r + + b n
1
r
Mathematics SL formula booklet
3
Topic 2—Functions and equations
2.4
Axis of symmetry of
graph of a quadratic
function
b
f ( x) =
ax 2 + bx + c ⇒ axis of symmetry x =
−
2a
2.6
Relationships between
logarithmic and
exponential functions
a x = e x ln a
log a a x= x= a loga x
2.7
Solutions of a quadratic
equation
ax 2 + bx + c= 0 ⇒
Discriminant
∆= b 2 − 4ac
x=
−b ± b 2 − 4ac
, a≠0
2a
Topic 3—Circular functions and trigonometry
3.1
Length of an arc
l =θr
Area of a sector
1
A = θ r2
2
3.2
Trigonometric identity
3.3
Pythagorean identity
cos 2 θ + sin 2 θ =
1
Double angle formulae
sin 2θ = 2sin θ cos θ
tan θ =
sin θ
cos θ
cos 2θ = cos 2 θ − sin 2 θ = 2cos 2 θ − 1 = 1 − 2 sin 2 θ
3.6
Cosine rule
c 2 = a 2 + b 2 − 2ab cos C ; cos C =
Sine rule
a
b
c
= =
sin A sin B sin C
Area of a triangle
1
A = ab sin C
2
Mathematics SL formula booklet
a 2 + b2 − c2
2ab
4
Topic 4—Vectors
4.1
Magnitude of a vector
4.2
Scalar product
v12 + v2 2 + v32
v =
v⋅w =
v w cos θ
v ⋅ w= v1w1 + v2 w2 + v3 w3
4.3
Angle between two
vectors
cos θ =
Vector equation of a line
r = a + tb
v⋅w
v w
Topic 5—Statistics and probability
5.2
Mean of a set of data
n
x=
∑fx
i i
i =1
n
∑f
i =1
5.5
5.6
5.7
5.8
5.9
Probability of an event A
P( A) =
i
n( A)
n(U )
Complementary events
P( A) + P( A′) =
1
Combined events
P( A ∪ B )= P( A) + P( B ) − P( A ∩ B )
Mutually exclusive events
P( A ∪ B )= P( A) + P( B )
Conditional probability
P(A ∩ B ) =
P(A) P(B | A)
Independent events
P( A ∩ B ) =
P( A) P( B )
Expected value of a discrete E( X =
) µ=
random variable X
∑ x P( X=
x)
x
Binomial distribution
n r
n−r
0,1, , n
X ~ B(n, p ) ⇒ P( X =
r) =
  p (1 − p ) , r =
r
 
Mean
E( X ) = np
Variance
Var(=
X ) np (1 − p )
Standardized normal
variable
z=
Mathematics SL formula booklet
x−µ
σ
5
Topic 6—Calculus
6.1
Derivative of f ( x)
6.2
Derivative of x n
f ( x) =
xn ⇒
Derivative of sin x
f ( x) =sin x ⇒
f ′( x) =cos x
Derivative of cos x
f ( x) =⇒
cos x
f ′( x) =
− sin x
f ( x) =tan x ⇒
f ′( x) =
Derivative of tan x
Derivative of e x
Derivative of ln x
Chain rule
Product rule
Quotient rule
6.4
Standard integrals
dy
 f ( x + h) − f ( x ) 
= f ′( x) = lim 

h
→
0
dx
h


y = f ( x) ⇒
f ′( x) =
nx n −1
1
cos 2 x
f ( x) =
ex ⇒
f ′( x) =
ex
f ( x) =
ln x ⇒
1
f ′( x) =
x
y = g (u ) , u =f ( x) ⇒
dy
dv
du
=u + v
dx
dx
dx
y =uv ⇒
u
y=
v
du
dv
v −u
dy
= dx 2 dx
dx
v
⇒
n
dx
∫x=
dy dy du
= ×
dx du dx
x n +1
+ C , n ≠ −1
n +1
1
∫ x dx =ln x + C ,
x>0
− cos x + C
∫ sin x dx =
dx
∫ cos x=
∫e
6.5
Area under a curve
between x = a and x = b
x
sin x + C
d=
x ex + C
b
A = ∫ y dx
a
b
Volume of revolution
V = ∫ πy 2 dx
a
about the x-axis from x = a
to x = b
6.6
Total distance travelled
from t1 to t 2
Mathematics SL formula booklet
distance =
∫
t2
t1
v(t ) dt
6
Mathematics SL formula booklet
7
Related documents