Download Name Solving Literal Equations (using Physics formulas) 3. Solve

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name
Solving Literal Equations (using Physics formulas)
1. Solve for vo: v
1
2. Solve for va: x=xo +vot+-at
2
= Vo + at
3. Solve for t: v = Vo + at
4. Solve fora:
5. Solve for v: p = mv
6. Solve for m: K
1
7. Solve for v: K = -mv2
2
8. Solve for m: T, = 27Z"f¥
2
V2 =vo 2 +2a(x-xo)
1
= -mv
2
2
I
I
9. Solve for a: v2
= Vo 2 + 2ax -
2axo
1
2
10. Solve for p: p + pgy +- pv = K
2
l
ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2002
(\
NEWTONIAN MECHANICS
= Vo + at
v
1
X = Xo + Vot +
= vO2
V2
"2
2
at
+ 2a (x - xo)
L F = Fnet = ma
Fjric ::; JiN
V
2
ac =---,:-
r = rF sin ()
p = mv
J = FAt = Ap
K - -I mv2
- 2
I
(\1
a =
F =
f =
h =
J =
K =
k =
£ =
m=
N =
P =
p =
r =
r =
T =
t =
U=
v =
W=
x =
Ji =
() =
ELECTRICITY AND MAGNETISM
acceleration
force
frequency
height
impulse
kinetic energy
springconstant
length
mass
normal force
power
momentum
radius or distance
position vector
period
time
potential energy
velocity or speed
work done on a system
position
coefficient of friction
angle
= -kx
U
= 1.-kx2
2
=-
C=Q
V
C = €oA
d
U =! QV=!CV2
c
2
2
-
t/J",
= magnetic flux
I ava -- dQ
M
i Ci
= '"
£..R.I
i
-=I
Rp
"" I
£..i Ri
FB
= qvBsinB
B=&!..
27r r
Gmlm2
r2
fjJm
r
Gmlm2
W...w'~~m".' ""_W
= B. A = BA cos B
C =-- dfjJm
avg
dt
c = B£v
I
52
47r€o I. r.I
FB = Blf. sin B
f
UG
1
v=-liL
RS
T = 1-
,l
Eavg=-~ d
Cs
Tp= 27rH
=-
q\q2
47r€o r
Cp = 4,Ci
I
cos ()
= 2nfi
FG
UE =qV=~
~=I,~
Fs
Ts
q
area
magneticfield
capacitance
distance
electricfield
emf
force
current
length
power
charge
pointcharge
resistance
distance
time
potential(stored)energy
electricpotentialor
potentialdifference
v = velocityor speed
p = resistivity
R=p£
A
V=IR
P=IV
W
Pavg = At
s
F
0
W = F. Ar = FAr cos ()
= Fv
E=-
A =
B =
C=
d =
E=
c =
F =
I =
£ =
P=
Q=
q =
R =
r =
t =
U=
V=
r = torque
AUg = mgh
P = F .v
F=~
qlq2
47r€o7
~_"..M_~"..w
,,"-"_w
w.,
',_,-,_,~,-
=~.-
I
J
')
"
ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2002
FLUID MECHANICS AND
THERMAL PHYSICS
I
WAVES AND OPTICS
= Po + pgh
Fbuoy = pVg
A1v, = A2v2
P
i
p + pgy + pv2
M = a£.ot!.T
Q
= mL
Q
= mct!.T
=
const.
L
F
p=/[
pV = nRT
3
Kavg = "2kBT
M = ~3kBT
f1
v rms = ~3RT
w = -pt!.V
= nct!.T
t!.U = Q +
A = area
c = specific heat or molar
specific heat
e = efficiency
F = force
h = depth
Kavg= average molecular
kinetic energy
Q
W
t!.U = ncvt!.T
= heat
of transformation
£. = length
M= molecular mass
m = mass of sample
n = number of moles
p = pressure
Q= heat transferred to a system
T = temperature
U= internal energy
V = volume
v = velocity or speed
vrms= root-mean-square
velocity
W = work done on a system
y = height
a = coefficient of linear
expanSlOn
11 =
massof molecule
p = density
e=I~1
1
1
-+-=si
1
I
So
h.
M-~--~
- ho -
= hf = pc
= hi -
Kmax
=!
p
= (t!.m)c 2
s.
So
I=R 2
d sin 0 = mA
f/J
E = energy
= frequency
K = kinetic energy
m=mass
p = momentum
A = wavelength
f/J= work function
I
d = separation
I = frequency or focal
length
h = height
L = distance
M= magnification
m = an integer
n = index of refraction
R = radius of curvature
S = distance
v = speed
x = position
A = wavelength
() = angle
mAL
xm = -cr-
GEOMETRY AND TRIGONOMETRY
Rectangle
A = bh
Triangle
A
ATOMICANDNUCLE~R PHYSICS
M
nIsin 01 = n 2 sin O2
.
n2
smOG =n]
= I2 bh
Circle
ec=~
A
c
n=v
A
TH - Tc
E
v = IA
= rcr2
C = 2rcr
Parallelepiped
V = £.wh
A=area
C = circumference
V = volume
S = surface area
b = base
h = height
£. = length
w = width
r = radius
Cylinder
V
S
= rcr2£.
= 2rcr£.+ 2rcr2
Sphere
4 3
V=-rcr
3
S = 4rcr2
Right Triangle
a2 + b2 = c2
sin 0
=c
!!:...
b
cosO
=C
tanO
=7)
n"
..
b
a
53
ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2002
MECHANICS
= Vo + at
v
a
I ?
= Xo + Vol + "2 at-
X
V2 =V02
I F =
+2a(x-xo)
= ma
Fnet
F
= dp
J
= J F dt = ~p
p
= mv
dt
Ffric ::; /-LN
W
= J F . dr
K
= -2I mv 2
P
= dW
dt
= F.v
.
P
~Ug
= mgh
V2
2
= --;- = m r
ae
~=rxF
= 'tnet = la
't
I
= J rzdm = I
rem
mrz
F =
f =
h =
I =
J =
K =
k =
e =
L =
m=
N=
P =
p =
r =
r =
T =
t =
U=
v =
W=
x =
/-L=
8 =
1:
= I mr/I m
= acceleration
force
tTequency
height
rotational inertia
impulse
kinetic energy
springconstant
length
angular momentum
mass
normal force
power
momentum
radius or distance
position vector
period
time
potential energy
velocity or speed
work done on a system
position
coefficient ofmction
= torque
L = r X p = fro
I
z
8 = 80 + mot+ "2at
= -kx
Us
= 1.
2 kx2
T
= 211: = 1m
E=F
q
g>E.dA=R
Eo
E=- dV
dr
V=~~qi £.J 411:E
o i
UE =qV=~
C= J(EoA
d
Cp = L. c.I
I
~=L~
Cs
j Cj
Fa
= 211:
= - -rGmlm2
Ua
=-
magneticflux
J( = dielectric constant
U =.!. Q V=.!.CV2
e 2
2
Rs =~£.., R.I
i
i R.I
P=IV
f
Tp
%, =
1= dQ
dt
Rp
= 211:jf
qlqz
411:Eo r
C=Q
V
~=L~
Ts
ri
A=area
B = magnetic field
C = capacitance
d = distance
E = electric field
£::= emf
F = force
I = current
L = inductance
I! = length
n = number of loops of wire per
unit length
P = power
Q = charge
q = point charge
R = resistance
r = distance
t = time
U = potential or stored energy
V = electric potential
v = velocityor speed
p = resistivity
R=PI!
A
V=IR
K = 1. 1m2
2
m = mo + at
Fs
I
F=-q\qz
411:Eo
---;:>
angle
m = angular speed
a = angular acceleration
v = rm
ELECTRICITY AND MAGNETISM
FM =qvxB
g>B.dt = /-Lol
F = JI dt x B
If
Bs
A
r2
iPm=JB.dA
£::
Gm)m2
r
=/-Lonl
=-
dtpm
dt
£::=-Ldl
dt
I
UL =-LI
2
54
2
.__.
~~W.=~,~=g""",=.W_,g~".=- .=.~-_.~-~---,
.. ...
~
J
"~
I
"
'"
II
II
..-....
ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2002
GEOMETRY AND TRIGONOMETRY
Rectangle
A = bh
Triangle
A
I bh
=2
Circle
A
= trr2
C
= 2trr
Parallelepiped
V =.£wh
Cylinder
V = trr2£
S = 21T:r£
+ 2trr2
Sphere
A=area
C = circumference
V= volume
S = surface area
b=base
h = height
£ = length
w = width
r = radius
v=itrr3
S = 4trr2
Right Triangle
a2 + b2
sin 8
,
= C2
Aa
= ~C
cos8=!!.-
b
C
a
tan8=7J
CALCULUS
df - df du
dx-dudx
d n
n-)
( ) =nx
dxx
~ (eX)= ex
d
I
-dx (Inx) =-x
~
(sin x)
= coox
!£(coox)
dx
= -sin
f x ndx =-xn+I I
x
n+ )
'
L
--. I
n.....-
fexdx=ex
t
f dxx = InIxI
f cooxdx
= sin
f sinxdx
= -coo x
x
cw_-,--,
..
%_H~H'"O_='__"H___=
__'m_=,
--".~
55
l
Related documents