Download INA117: High Common-Mode Voltage Difference Amplifier (Rev. A)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Audio power wikipedia , lookup

Test probe wikipedia , lookup

Multimeter wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Regenerative circuit wikipedia , lookup

TRIAC wikipedia , lookup

Ohm's law wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Integrating ADC wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Index of electronics articles wikipedia , lookup

CMOS wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Radio transmitter design wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Amplifier wikipedia , lookup

Current source wikipedia , lookup

Two-port network wikipedia , lookup

Wilson current mirror wikipedia , lookup

Power MOSFET wikipedia , lookup

Negative-feedback amplifier wikipedia , lookup

Schmitt trigger wikipedia , lookup

Voltage regulator wikipedia , lookup

Surge protector wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Power electronics wikipedia , lookup

Current mirror wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Operational amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Transcript
INA117
INA
117
INA
117
www.ti.com
High Common-Mode Voltage
DIFFERENCE AMPLIFIER
FEATURES
APPLICATIONS
● COMMON-MODE INPUT RANGE:
±200V (VS = ±15V)
● PROTECTED INPUTS:
±500V Common-Mode
±500V Differential
● UNITY GAIN: 0.02% Gain Error max
● NONLINEARITY: 0.001% max
● CMRR: 86dB min
●
●
●
●
●
CURRENT MONITOR
BATTERY CELL-VOLTAGE MONITOR
GROUND BREAKER
INPUT PROTECTION
SIGNAL ACQUISITION IN NOISY
ENVIRONMENTS
● FACTORY AUTOMATION
DESCRIPTION
The INA117 is a precision unity-gain difference
amplifier with very high common-mode input voltage
range. It is a single monolithic IC consisting of a
precision op amp and integrated thin-film resistor
network. It can accurately measure small differential
voltages in the presence of common-mode signals up
to ±200V. The INA117 inputs are protected from
momentary common-mode or differential overloads
up to ±500V.
In many applications, where galvanic isolation is not
essential, the INA117 can replace isolation amplifiers.
This can eliminate costly isolated input-side power
supplies and their associated ripple, noise and quiescent current. The INA117’s 0.001% nonlinearity and
200kHz bandwidth are superior to those of conventional isolation amplifiers.
21.11kΩ
RefB
1
–In
2
+In
3
V–
4
380kΩ
8
Comp
7
V+
6
VO
5
RefA
380kΩ
380kΩ
20kΩ
The INA117 is available in 8-pin plastic mini-DIP and
SO-8 surface-mount packages, specified for the –40°C
to +85°C temperature range. The metal TO-99 models
are available specified for the –40°C to +85°C and
–55°C to +125°C temperature range.
Copyright © 2000, Texas Instruments Incorporated
SBOS154A
Printed in U.S.A. December, 2000
SPECIFICATIONS
At TA = +25°C, VS = ±15V, unless otherwise noted.
INA117AM, SM
PARAMETER
CONDITIONS
MIN
GAIN
Initial (1)
Error
vs Temperature
Nonlinearity (2)
OUTPUT
Rated Voltage
Rated Current
Impedance
Current Limit
Capacitive Load
IO = +20mA, –5mA
VO = 10V
To Common
Stable Operation
INPUT
Impedance
Differential
Common-Mode
Differential
Common-Mode, Continuous
Voltage Range
Common-Mode Rejection
DC
AC, 60Hz
vs Temperature, DC
AM, BM, P, KU
SM
10
+20, –5
INA117BM
TYP
MAX
1
0.01
2
0.0002
0.05
10
0.001
MIN
✻
✻
✻
✻
✻
12
TYP
INA117P, KU
MAX
MIN
✻
✻
✻
✻
0.02
✻
✻
✻
TYP
✻
✻
MAX
UNITS
V/V
%
ppm/°C
%
✻
✻
✻
V
mA
Ω
mA
pF
0.01
+49, –13
1000
✻
✻
✻
✻
✻
✻
800
400
✻
✻
✻
✻
✻
✻
kΩ
kΩ
V
V
✻
✻
dB
dB
✻
dB
dB
±10
±200
✻
✻
(3)
VCM = 400Vp-p
TA = TMIN to TMAX
OFFSET VOLTAGE
Initial
KU Grade (SO-8 Package)
vs Temperature
vs Supply
vs Time
RTO
DYNAMIC RESPONSE
Gain Bandwidth, –3dB
Full Power Bandwidth
Slew Rate
Settling Time: 0.1%
0.01%
0.01%
POWER SUPPLY
Rated
Voltage Range
Quiescent Current
TEMPERATURE RANGE
Specification: AM, BM, P, KU
SM
Operation
Storage
RTO
80
80
86
66
94
94
66
60
75
75
80
90
74
120
1000
8.5
90
200
40
80
✻
1000
✻
✻
✻
40
✻
✻
✻
600
✻
✻
✻
✻
2000
µV
µV
µV/°C
dB
µV/mo
(5)
✻
✻
25
550
✻
200
VO = 20Vp-p
VCM
✻
✻
(4)
TA = TMIN to TMAX
VS = ±5V to ±18V
OUTPUT NOISE VOLTAGE
fB = 0.01Hz to 10Hz
fB = 10kHz
70
66
30
2
VO = 10V Step
VO = 10V Step
= 10V Step, VDIFF = 0V
Derated Performance
VO = 0V
±5
2.6
6.5
10
4.5
±15
1.5
–25
–55
–55
–65
✻
✻
✻
✻
✻
✻
✻
✻
✻
±18
2
✻
+85
+125
+125
+150
✻
✻
µVp-p
nV/√Hz
✻
kHz
kHz
V/µs
µs
µs
µs
✻
✻
✻
✻
✻
V
V
mA
✻
✻
✻
✻
✻
–40
+85
✻
✻
✻
✻
–40
–55
+85
+125
✻
✻
✻
✻
°C
°C
°C
°C
✻Specification same as for INA117AM.
NOTES: (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale
peak-to-peak output. (3) With zero source impedance (see discussion of common-mode rejection in Application Information section). (4) Includes effects of amplifier’s
input bias and offset currents. (5) Includes effects of amplifier’s input current noise and thermal noise contribution of resistor network.
2
INA117
SBOS154A
PIN CONFIGURATION
Top View
TO-99
INA117AM, BM, SM
Tab
8
Ref B
–In
Top View
DIP/SO
INA117P, KU
Comp
1
7
V+
2
6
3
RefB
1
8
Comp
–In
2
7
V+
+In
3
6
Output
V–
4
5
RefA
Output
5
Ref A
+In
4
V–
Case internally connected to V–. Make no connection.
ELECTROSTATIC
DISCHARGE SENSITIVITY
ABSOLUTE MAXIMUM RATINGS
Supply Voltage .................................................................................. ±22V
Input Voltage Range, Continuous ................................................... ±200V
Common-Mode and Differential, 10s ........................................... ±500V
Operating Temperature
M Metal TO-99 ................................................................ –55 to +125°C
P Plastic DIP and U SO-8 ................................................ –40 to +85°C
Storage Temperature
M Package ....................................................................... –65 to +150°C
P Plastic DIP and U SO-8 .............................................. –55 to +125°C
Lead Temperature (soldering, 10s) ............................................... +300°C
Output Short Circuit to Common ............................................. Continuous
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits
may be more susceptible to damage because very small
parametric changes could cause the device not to meet its
published specifications.
PACKAGE/ORDERING INFORMATION
PRODUCT
INA117P
INA117KU
"
PACKAGE
DRAWING
NUMBER
SPECIFIED
TEMPERATURE
RANGE
DIP-8
006
–40°C to +85°C
INA117P
INA117P
Rails
SO-8 Surface-Mount
182
"
INA117KU
INA117KU
Rails
PACKAGE
PACKAGE
MARKING
ORDERING
NUMBER(1)
TRANSPORT
MEDIA
"
"
"
"
INA117KU/2K5
Tape and Reel
INA117AM
TO-99 Metal
001
–25°C to +85°C
INA117AM
INA117AM
Rails
INA117BM
"
"
"
INA117BM
INA117BM
Rails
INA117SM
"
"
–55°C to +125°C
INA117SM
INA117SM
Rails
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500
pieces of “INA117KU/2K5” will get a single 2500-piece Tape and Reel.
INA117
SBOS154A
3
TYPICAL PERFORMANCE CURVES
At TA = +25°C, VS = ±15V, unless otherwise noted.
COMMON-MODE REJECTION vs FREQUENCY
POWER-SUPPLY REJECTION vs FREQUENCY
100
INA117BM
Power-Supply Rejection (dB)
Common-Mode Rejection (dB)
100
90
80
INA117AM, SM, P, KU
70
60
50
40
100
1k
10k
100k
V+
70
60
50
2M
1
10
100
1k
10k
Frequency (Hz)
Frequency (Hz)
POSITIVE COMMON-MODE VOLTAGE RANGE
vs POSITIVE POWER-SUPPLY VOLTAGE
NEGATIVE COMMON-MODE VOLTAGE RANGE
vs NEGATIVE POWER-SUPPLY VOLTAGE
–400
TA = –55°C
350
TA = +25°C
300
Max Rating = 200V
250
TA = +125°C
200
150
–VS = –5V to –20V
100
50
Negative Common-Mode Range (V)
400
Positive Common-Mode Range (V)
V–
80
40
20
–350
TA = +25°C
–300
Max Rating = –200V
–250
TA = –55°C to +125°C
–200
–150
+VS = +5V to +20V
–100
–50
5
10
15
Positive Power-Supply Voltage (V)
4
90
20
–5
–10
–15
–20
Negative Power-Supply Voltage (V)
INA117
SBOS154A
TYPICAL PERFORMANCE CURVES (Cont.)
At TA = +25°C, VS = ±15V, unless otherwise noted.
SMALL SIGNAL STEP RESPONSE
CL = 0
SMALL SIGNAL STEP RESPONSE
CL = 1000pF
LARGE SIGNAL STEP RESPONSE
INA117
SBOS154A
5
APPLICATION INFORMATION
Figure 1 shows the basic connections required for operation.
V–
Applications with noisy or high-impedance power-supply lines
may require decoupling capacitors close to the device pins.
V+
4
The output voltage is equal to the differential input voltage between pins 2 and 3. The common mode input
voltage is rejected.
2
V2
Internal circuitry connected to the compensation pin 8 cancels the parasitic distributed capacitance between the feedback resistor, R2, and the IC substrate. For specified dynamic performance, pin 8 should be grounded or connected
through a 0.1µF capacitor to an AC ground such as V+.
380kΩ
6
380kΩ
3
V3
7
380kΩ
VO = V3 – V2
21.1kΩ
20kΩ
8
–15V
1
+15V
5
100kΩ
+15V
(a)
+
+
1µF
Tantalum
4
2
7
R1
380kΩ
10Ω
1µF
Tantalum
R2
380kΩ
V–
V+
4
–In = V2
R3
3
2
6
380kΩ
VO = V 3 – V 2
7
380kΩ
380kΩ
V2
+In = V3
R5
21.1kΩ
50kΩ
±1.5mV
Range
–15V
R4
20kΩ
3
6
380kΩ
VO = V3 – V2
V3
8
1
5
V+
21.1kΩ
8
20kΩ
1
100µA
1/2 REF200
5
FIGURE 1. Basic Power and Signal Connections.
100Ω
COMMON-MODE REJECTION
Common-mode rejection (CMR) of the INA117 is dependent on the input resistor network, which is laser-trimmed for
accurate ratio matching. To maintain high CMR, it is important to have low source impedances driving the two inputs.
A 75Ω resistance in series with pin 2 or 3 will decrease CMR
from 86dB to 72dB.
(b)
OPA27
±10mV
10kΩ
100µA
1/2 REF200
Resistance in series with the reference pins will also degrade
CMR. A 4Ω resistance in series with pin 1 or 5 will decrease
CMRR from 86dB to 72dB.
Most applications do not require trimming. Figures 2 and 3
show optional circuits that may be used for trimming offset
voltage and common-mode rejection.
TRANSFER FUNCTION
Most applications use the INA117 as a simple unity-gain
difference amplifier. The transfer function is:
VO = V3 – V2
100Ω
Offset adjustment is regulated—
insensitive to power supply variations.
V–
FIGURE 2. Offset Voltage Trim Circuits.
Some applications, however, apply voltages to the reference
terminals (pins 1 and 5). A more complete transfer function
is:
VO = V3 – V2 + 19 • V5 – 18 • V1
V5 and V1 are the voltages at pins 5 and 1.
V3 and V2 are the voltages at pins 3 and 2.
6
INA117
SBOS154A
MEASURING CURRENT
The INA117 can be used to measure a current by sensing the
voltage drop across a series resistor, RS. Figure 4 shows the
INA117 used to measure the supply currents of a device
under test. The circuit in Figure 5 measures the output
current of a power supply. If the power supply has a sense
connection, it can be connected to the output side of RS to
eliminate the voltage-drop error. Another common application is current-to-voltage conversion, as shown in Figure 6.
V–
V+
(+200V max)
+VS
4
7
380kΩ
2
380kΩ
C
RS
RC*
6
380kΩ
3
VO = RS IDUT+
IDUT+
21.1kΩ
V–
V+
8
4
V2
2
20kΩ
1
5
7
380kΩ
Device
Under
Test
380kΩ
V+
V–
4
6
V3
3
380kΩ
380kΩ
2
21.1kΩ
8
10Ω
RS
6
380kΩ
3
5
200Ω
380kΩ
RC*
20kΩ
1
7
IDUT–
VO = V3 – V2
VO = RS IDUT–
CMR
Adjust
21.1kΩ
10Ω
8
–VS
20kΩ
1
5
(–200V max)
If offset adjust is also required,
connect to offset circuit, Figure 2.
*Not needed if R S is less than 20Ω —see text.
FIGURE 4. Measuring Supply Currents of Device Under
Test.
FIGURE 3. CMR Trim Circuit.
V–
V+
4
7
Power Supply
±200V max
2
Out
380kΩ
380kΩ
Sense
RS
RC*
Optional Load
Sense Connection
(see text)
3
6
380kΩ
VO = IL RS
IL
21.1kΩ
20kΩ
Load
8
1
5
*RC = RS not needed if RS is less than 20Ω—see text.
FIGURE 5. Measuring Power Supply Output Current.
INA117
SBOS154A
7
VS
(±200V max)
2
380kΩ
380kΩ
RS
250Ω
3
250Ω
RC*
4 to 20mA
6
380kΩ
VO = 1V to 5V
21.1kΩ
8
20kΩ
1
5
VS
(a)
(±200V max)
*Not needed if RS is less than 20Ω—see text.
2
380kΩ
380kΩ
250Ω
RC *
RS
250Ω
3
6
380kΩ
VO = –1V to –5V
4 to 20mA
21.1kΩ
8
20kΩ
1
5
(b)
4 to 20mA
2
380kΩ
380kΩ
*Not needed if RS is less than 20Ω—see text.
250Ω
RC *
RS
250Ω
3
6
380kΩ
VO = 1V to 5V
20kΩ
21.1kΩ
8
VS
1
5
(±200V max)
4 to 20mA
(c)
*Not needed if RS is less than 20Ω—see text.
2
380kΩ
380kΩ
RS
250Ω
6
3
380kΩ
VO = –1V to –5V
250Ω
RC *
21.1kΩ
VS
(±200V max)
8
20kΩ
1
5
(d)
*Not needed if RS is less than 20Ω—see text.
FIGURE 6. Current to Voltage Converter.
8
INA117
SBOS154A
Example: For a 1V/mA transfer function, the nominal,
uncorrected value for RS would be 1kΩ. A slightly larger
value, RS' = 1002.6Ω, compensates for the gain error due to
loading.
In all cases, the sense resistor imbalances the input resistor
matching of the INA117, degrading its CMR. Also, the input
impedance of the INA117 loads RS, causing gain error in the
voltage-to-current conversion. Both of these errors can be
easily corrected.
The 380kΩ term in the equation for RS' has a tolerance of
±25%, so sense resistors above approximately 400Ω may
require trimming to achieve gain accuracy better than 0.02%.
The CMR error can be corrected with the addition of a
compensation resistor, RC, equal in value to RS as shown in
Figures 4, 5, and 6. If RS is less than 20Ω, the degradation
in CMR is negligible and RC can be omitted. If RS is larger
than approximately 2kΩ, trimming RC may be required to
achieve greater than 86dB CMR. This is because the actual
INA117 input impedances have 1% typical mismatch.
Of course, if a buffer amplifier is added as shown in Figure
7, both inputs see a low source impedance, and the sense
resistor is not loaded. As a result, there is no gain error or
CMR degradation. The buffer amplifier can operate as a
unity gain buffer or as an amplifier with non-inverting gain.
Gain added ahead of the INA117 improves both CMR and
signal-to-noise. Added gain also allows a lower voltage drop
across the sense resistor. The OPA1013 is a good choice for
the buffer amplifier since both its input and output can swing
close to its negative power supply.
If RS is more than approximately 100Ω, the gain error will
be greater than the 0.02% specification of the INA117. This
gain error can be corrected by slightly increasing the value
of RS. The corrected value, RS', can be calculated by:
R S' =
R S • 380 kΩ
380 kΩ – R S
–15V
V1
+15V
4
7
I
380kΩ
2
VX
V1
–21V to +10V
–5V to –36V
–20V to –51V
+15V
Ground
–15V
380kΩ
R2 *
RS
6
380kΩ
3
VO = I • RS • (1 +
1/2
OPA1013
21.1kΩ
R1 *
8
–VX
Op amp power can be derived with voltagedropping zener diode if –VX power is relatively
constant.
|VX| = (5V to 36V) + VZ
e.g., If VZ is 50V then VX = –55V to –86V.
R2
)
R1
20kΩ
1
5
*Or connect as buffer (R2 = 0, omit R1).
Regulated power for op amp allows –VX
power to vary over wide range.
180k Ω
VZ
VX = –30V to –200V
MPS-A42
0.01µF
IN4702
or
–VX
V–
V+
4
2
I
7
380kΩ
380kΩ
RS
3
6
380kΩ
V O = I • RS
1/2
OPA1013
0.1µF
21.1kΩ
8
20kΩ
1
5
–VX
FIGURE 7. Current Sensing with Input Buffer.
INA117
SBOS154A
9
Figure 8 shows very high input impedance buffer used to
measure low leakage currents. Here, the buffer op amp is
powered with an isolated, split-voltage power supply. Using
an isolated power supply allows full ±200V common-mode
input range.
these resistors produces approximately 550nV/√Hz noise.
The internal op amp contributes virtually no excess noise at
frequencies above 100Hz.
Many applications may be satisfied with less than the full
200kHz bandwidth of the INA117. In these cases, the noise
can be reduced with a low-pass filter on the output. The twopole filter shown in Figure 9 limits bandwidth to 1kHz and
reduces noise by more than 15:1. Since the INA117 has a
1/f noise corner frequency of approximately 100Hz, a cutoff
frequency below 100Hz will not further reduce noise.
NOISE PERFORMANCE
The noise performance of the INA117 is dominated by the
internal resistor network. The thermal or Johnson noise of
±200V max
1kΩ
+15V
100MΩ
+15V
Isolated DC/DC Converter
9kΩ
D1,2*
PWS725
Com
OPA111
–15V
IL
100kΩ
Device
Under
Test
2
*D1 and D2 are each a 2N3904 transistor
base-collector junction (emitter open).
3
380kΩ
380kΩ
6
380kΩ
eO = IL x 109
(1V/nA)
21.1kΩ
20kΩ
INA117
8
1
5
FIGURE 8. Leakage Current Measurement Circuit.
V+
V–
4
V2
V3
2
3
7
380kΩ
C2
0.02µF
380kΩ
6
380kΩ
R1
11.0kΩ
R2
11.3kΩ
OPA27
2-Pole Butterworth
Low-Pass Filter
C1
0.01µF
21.1kΩ
8
VO = V2 – V3
20kΩ
1
5
BUTTERWORTH
LOW-PASS
OUTPUT NOISE
f–3dB
(mVp-p)
200kHz
100kHz
10kHz
1kHz
≤100Hz(1)
See Application Bulletin AB-017 for other filters.
1.8
1.1
0.35
0.11
0.05
R1
11kΩ
11kΩ
11kΩ
11kΩ
R2
C1
No Filter
11.3kΩ
100pF
11.3kΩ
1nF
11.3kΩ
10nF
11.3kΩ
0.1µF
C2
200pF
2nF
20nF
0.2µF
NOTE: (1) Since the INA117 has a 1/f noise corner frequency of approximately 100Hz,
bandwidth reduction below this frequency will not significantly reduce noise.
FIGURE 9. Output Filter for Noise Reduction.
10
INA117
SBOS154A
V2
380kΩ
2
380kΩ
V–
V+
4
V3
6
380kΩ
3
VO =
1+
19 R7
380kΩ
2
V2
R6
21.1kΩ
7
V3 – V 2
380kΩ
20kΩ
INA117
8
1
5
R7
V3
R6
6
380kΩ
3
VO = V3 – V2 + VX
21.1kΩ
OPA27
Refer to Application
Bulletin AB-001 for
details.
GAIN
(V/V)
R7
(kΩ)
R6
(kΩ)
1/2
1/4
1/5
1.05
3.16
4.22
20
20
20
20kΩ
INA117
8
1
5
OPA27
VX
FIGURE 11. Summing VX in Output.
FIGURE 10. Reducing Differential Gain.
V2
2
R1
380kΩ
3
R3
380kΩ
Refer to Application Bulletin AB-010 for details.
(a)
R2
380kΩ
6
VOUT = V3 – V2
V3
R5
21.1kΩ
V2
V3
2
R1
380kΩ
R2
380kΩ
R4
20kΩ
INA117
8
1
5
100pF
3
R3
380kΩ
R6
5kΩ
6
VOUT = V3 – V2
R4
20kΩ
R5
21.1kΩ
A1
OPA27
R9
400kΩ
8
1
5
R10
10kΩ
100pF
R6
5kΩ
R7
10kΩ
–V3 /20
100pF
INA117
R8
10kΩ
A2
OPA27
(b)
R7
10kΩ
VCM /20
A1
OPA27
FIGURE 12. Common-Mode Voltage Monitoring.
INA117
SBOS154A
11
+9V
7
2
V2
380kΩ
380kΩ
7
VCM Range =
+50V to +200V
(VS ±9V)
3
V3
21.1kΩ
(a)
2
6
380kΩ
25kΩ
25kΩ
5
6
20kΩ
VO = V3 – V2
INA117
8
1
5
4
3
25kΩ
–3V > VO > –6V swap A2 pins
2 and 3 for +4V > VO > 3V.
INA105
25kΩ
1
4
–9V
+9V
7
2
V2
380kΩ
380kΩ
7
VCM Range =
–12V to +200V
(VS = ±9V)
3
V3
6
380kΩ
2
25kΩ
25kΩ
5
6
21.1kΩ
(b)
INA117
8
VO = V3 – V2
20kΩ
1
5
4
3
25kΩ
25kΩ
1N4684
3.3V
(V–) +3.3V
0V > VO > –6V swap A2 pins
2 and 3 for +4V > VO > 0V.
INA105
10kΩ
1
4
–9V
V2
2
380kΩ
380kΩ
VCM Range = ±200V
(VS = ±9V)
V3
3
6
380kΩ
21.1kΩ
2
25kΩ
25kΩ
5
6
20kΩ
VO = V3 – V2
INA117
(c)
8
1
5
3
R7
1MΩ
25kΩ
25kΩ
INA105
1
13.7kΩ
(VS = ±9V)
Refer to Application Bulletin AB-015 for details.
R8
1MΩ
OPA602
FIGURE 13. Offsetting or Boosting Common-Mode Voltage Range for Reduced Power-Supply Voltage Operation.
12
INA117
SBOS154A
+200V max
V–
V+
4
2
7
380kΩ
380kΩ
+
–
3
6
380kΩ
21.1kΩ
20kΩ
INA117
8
1
5
V–
V+
4
2
7
380kΩ
380kΩ
+
6
–
3
380kΩ
21.1kΩ
20kΩ
INA117
Repeat
for each
cell
8
1
eO = Cell Voltage
5
MUX
V–
V+
4
2
7
380kΩ
380kΩ
+
–
3
6
380kΩ
21.1kΩ
20kΩ
INA117
8
1
5
Cell Select
V–
V+
4
2
7
380kΩ
380kΩ
+
–
3
6
380kΩ
21.1kΩ
20kΩ
INA117
8
1
5
–200V max
FIGURE 14. Battery Cell Voltage Monitor.
INA117
SBOS154A
13
VS (200V max)
+15V –15V
7
2
4
380kΩ
380kΩ
R1
0.1Ω
3
6
380kΩ
–0.1 (I1)
I1
20kΩ
21.1kΩ
INA117
8
1
Load
A1
VIN
5
ILOAD = I1 – I2
+15V
7
+15V
–15V
7
4
–15V
4
I2
2
380kΩ
100kΩ
380kΩ
2
R2
0.1Ω
5
10kΩ
6
6
3
380kΩ
3
–0.1 (I2)
10kΩ
VO
VO = I 1 – I2
= ILOAD
100kΩ
21.1kΩ
INA106
20kΩ
1
INA117
8
1
5
VS (–200V max)
FIGURE 15. Measuring Amplifier Load Current.
V2
V3
2
3
R1
380kΩ
R2
380kΩ
R3
380kΩ
6
VOUT = V3 – V2
R5
21.1kΩ
R4
20kΩ
INA117
8
1
5
C1
R1
0.47µF
1MΩ
OPA602
Refer to Application
Bulletin AB-008 for
details.
FIGURE 16. AC-Coupled INA117.
14
INA117
SBOS154A
PACKAGE OPTION ADDENDUM
www.ti.com
17-Mar-2017
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
INA117AM
NRND
TO-99
LMC
8
20
Green (RoHS
& no Sb/Br)
AU
N / A for Pkg Type
INA117AM
INA117BM
NRND
TO-99
LMC
8
20
Green (RoHS
& no Sb/Br)
AU
N / A for Pkg Type
INA117BM
INA117KU
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU-DCC
Level-3-260C-168 HR
INA117KU/2K5
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU-DCC
Level-3-260C-168 HR
INA
117KU
2
INA117KU/2K5G4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU-DCC
Level-3-260C-168 HR
INA
117KU
2
INA117KUG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU-DCC
Level-3-260C-168 HR
INA117P
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA117P
INA117PG4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
INA117P
INA117SM
NRND
TO-99
LMC
8
20
Green (RoHS
& no Sb/Br)
AU
N / A for Pkg Type
INA117SM
INA117SMQ
NRND
TO-99
LMC
8
20
Green (RoHS
& no Sb/Br)
AU
N / A for Pkg Type
INA117SMQ
-40 to 85
-40 to 85
INA
117KU
2
INA
117KU
2
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
17-Mar-2017
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated