Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Marine Systems Engineering At Delft University of Technology Prof. Douwe Stapersma & Dr. Hugo Grimmelius 5-12-13 Delft University of Technology Challenge the future Marine Systems Engineering 1 1. Introduction Marine Systems Engineering 2 Delft University of Technology Delft University of Technology was founded in 1842 by King William II. It is the oldest and largest University of Technology in the Netherlands. The 8 faculties offer 16 Bachelor’s courses and 29 Master’s courses in comprehensive programmes of education and research. Marine Systems Engineering Flame of Prometheus Stealing fire from the gods, giving it to man, Prometheus gave technology and development to mankind. 3 Faculty 3ME Dean Departments: Process & Energy Management Support Secretarial Support Personnel & Organization Marketing & Communications Finance & Control Education & Students Facility Management Information- & Comms Technology Precision & Delft Center Mechatronics for Systems & Engineering Control Maritime & Transport Technology Marine Systems Engineering Materials Science & Engineering BioMedical Engineering 4 Department Marine & Transport Technology Prof Dr ir Lodewijks Head of Department MTT Department Support Marine Technology Section Ship Hydromechanics & Structures Prof Dr ir Huijsmans Section Ship Design, Production & Operations Prof ir Hopman Section Offshore & Dredging Engineering Prof ir Van Ree Marine Systems Engineering Section Transport Engineering & Logistics Prof Dr ir Lodewijks 5 Ship Design, Production & Operation Prof ir Hopman Marine Systems Engineering Prof ir Stapersma Ship Design Prof ir Hopman Head of Section SDPO Ship Production Vacant Marine Systems Engineering Ship Operation Prof Dr van de Voorde 6 Marine Systems Engineering • MSE group consisting of: • • • • • Douwe Stapersma (Prof, also NLDA) Hugo Grimmelius (Ass Prof) Peter de Vos (Ass Prof) Roelf van Till (Instructor) 5 PhD researchers • 3 at the university • 2 external Marine Systems Engineering 7 MSE MEGAtronica Introduction MSE focuses on the design aspects of complex, assembled mechanical and electric systems For example for: • Ships, especially complex specials • Combined heat power plants • Vehicles • Complex components Marine Systems Engineering 8 System integration Wide (system level) vs deep (component level) “As broad as possible, as detailed as necessary” • • Multi disciplinary • • Mechanical, Electrical, Chemical Design, Operation, Maintenance Werktuigkunde vs. Werktuigbouw kunde • Cooperation with industry • • • Close link to practical problems Access to (ship) installations Compensates lack of laboratory facilities Marine Systems Engineering 9 2. Education Marine Systems Engineering 10 Marine Systems Engineering • MSE group gives courses in: • • • at Bachelor level: • Marine Engineering (mtp103, mt219) • Matlab and Simulation (wb3220) • Combined Power and Heat plant design project (mtp212) • Electric components and networks (mt3406) at Master of Science level • Maintenance & Reliability (mt213) • Mechatronics for Marine Technology (mt218) • Diesel Engines (wb4408a/b) • Introduction DP systems (oe5663) Post graduate courses for HME • Marine Propulsion • Auxiliary Systems Marine Systems Engineering 11 Education Marine Technology • BSc • • Increasing Inflow: 50 > 75 students 2 MSc tracks; 7 specialisations: • • Science • Ship Hydromechanics • Ship & Offshore structures • Ship Resistance & Propulsion Joint MSc programme with NTNU/Trondheim (since Sept 2007) Ship Design, Production & Operation (SDPO) • Ship Design • Marine Engineering • Shipping Management • Ship Production Marine Systems Engineering 12 Education Mechanical Engineering • BSc • • Increasing Inflow: 250 > 500 students Many MSc tracks • • • … Transport Engineering • Transport Engineering Logistics (TEL) • (Production Engineering Logistics (PEL)) • Mechanical Systems Integration (MSI) • (Diesel Engines (DE)) … Marine Systems Engineering 13 Educational structure Bachelor of Science • • • • • • • 3 year (3 x 60 EC = 3 x 60 x 28 hrs of study load)) Basic mathematics and physics Applied physics (flow dynamics, mechanical dynamics, strength & deformations, thermodynamics) Introduction in design & technology subjects One minor (30 EC) Several projects (group assignments) One BSc research assignment (10 EC) Marine Systems Engineering 14 Educational structure Master of Science • • 2 year (2 x 60 EC) 1st year: • • • subjects in chosen track partly compulsory, partly selectives 2nd year • • Industrial assignment MSc research assignment (40 to 50 EC) • independent research • "new" subjects Marine Systems Engineering 15 Some examples of MSc research • MSc thesis preferably • • In line with ongoing projects • Support for contract research • Support for PhD research Exploration of new areas, preparation for PhD research Marine Systems Engineering 16 Nuclear Short Sea Shipping Marine Systems Engineering 17 Cost prediction model for engine room engineering & outfitting Placement of remaining components 5% Remaining work 5% Placement of engine line 10% Piping 50% Commisioning 13% Installation of shaft and propeller 17% Transportation effort: f(d, l, m, n, nr, tp) To/from the ship Type of transportation (crane, lorry, etc) f(d, l, m, n, nr) Marine Systems Engineering Type of positioning (on deck, on foundation,on unit) f(d, l, m, n) Inside the ship Number of transships Etc. f(d, l, m, nr, tp) 18 Dynamic behaviour of Controllable Pitch Propellers Command Engine Control System Propulsion Control System Pitch Control System fuel rack Diesel Eng M Gas turbine pitch Q Propeller - + Rotor Dynamics 1 2I Torque Disturbances Propeller T Thrust R 1 m n n Ship Resistance - + Ship Translation Dynamics vs va 1-w Disturbances [-] z-axis (spindle axis) 0 H 2 10 [- ] Q Y /Q QST (a b s ) ; (d e g ) Q Y /Q Mx FNx y-axis FAX,res 2 /Q x-axis (shaft axis) H FP p FNy H 2 My [b a r/(l/m in )] MRes H 2 Fz 180 135 90 45 0 10 0 C C C C C -2 10 90 45 0 -4 5 -9 0 10 -1 10 0 10 1 BV BV BV BV BV = = = = = 0 2 5 8 1 .8 1 .6 3 .4 5 1 .3 10 2 F re q u e n c y (H z ) Marine Systems Engineering 19 Influence of propulsion system on manoeuvring capabilities Marine Systems Engineering 20 3. Research Marine Systems Engineering 21 Research department M&TT • • • Intelligent Marine, Transport and Production Processes (IMTPP) Design for Service (DfS) Innovative Design of Marine and Transport Concepts (IDMTC) Marine Systems Engineering 22 Research Marine Systems Engineering (together with NLDA) • • • Design for Service Main focus: complex systems, not individual components Areas: • • • • • Dynamic behaviour Maintenance engineering Concept exploration & design Emissions and fuels Common factors of interest: • • Effects on system integration Influence of system integration Marine Systems Engineering 23 System integration Wide (system level) vs deep (component level) “As broad as possible, as detailed as necessary” • • Multi disciplinary • • • Mechanical, Electrical, Chemical, Design, Operation, Maintenance Cooperation with industry • • • • Wärtsilä, IHC, Damen, Boskalis, Imtech, Alewijnse, etc. Close link to practical problems Access to (ship) installations Compensates lack of laboratory facilities Marine Systems Engineering 24 Past PhD projects • MA-CAD: Maintenance Concept Adjustment & Design (Bojan Vucinic, 1994) • • Quaestor: Expert governed parametric model assembling (Martin van Hees, 1997) • • MARIN, TUD Conceptual design of submarines (Clemens van der Nat, 1999) • • RNLN, Nedlloyd RDM, NLDA, TUD Condition monitoring of CRP (Hugo Grimmelius, 2005) • Van Buuren – Van Swaay (now Imtech) Marine Systems Engineering 25 Concept design of submarines (van der Nat) no Sizing ok? Balancing yes Loa PMEM Performance Vburst no Marine Systems Engineering ok? yes 26 Condition monitoring for CRP (Grimmelius) Compression Refrigeration Plant Modelling 1 q, R1 (W R1 ) pV1 pV2 R1 TV1 Ti m, i Implementation TV2 TR1 4 m, o V2 m, R1 V1 q, V2 q,V1 2 3 Matching & validation Results 5 θsub [°C] 4 D (sim) 3 D (m) A (sim) A (m) 2 matched 1 0 5.0 7.0 9.0 imcond 11.0 13.0 15.0 [kg] Marine Systems Engineering 27 Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • MARIN, NLDA Marine Systems Engineering 28 Marine Systems Engineering 29 Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • • MARIN, NLDA Particle emission reduction (Geert van Rens, 2008) • ECN, NLDA (Novem) Marine Systems Engineering 30 (van Rens) Marine Systems Engineering 31 Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • • Particle emission reduction (Geert van Rens, 2008) • • MARIN, NLDA ECN, NLDA (Novem) Control strategies to avoid cavitation inception (Arthur Vrijdag, 2009) • RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA Marine Systems Engineering 32 [-] Command 0 /Q H 2 10 p H 2 /Q H 2 [b a r /( l /m i n ) ] (a b s ) ; (d e g ) Q Y /Q H 2 [-] Q Y Engine Control System 180 135 Diesel Eng M Gas turbine 0 C C C C C -2 10 90 45 0 -4 5 -9 0 10 Pitch Control System fuel rack 90 45 0 10 Propulsion Control System -1 10 0 10 1 BV BV BV BV BV = = = = = 0 2 5 8 1 Q Propeller - + Rotor Dynamics .8 1 .6 3 .4 5 1 .3 pitch 1 2I n 10 Torque Disturbances Propeller T Thrust R - + 1 m n va Ship Resistance Ship Translation Dynamics vs 1-w 2 Disturbances F re q u e n c y (H z ) CPP control dynamics vs system dynamics Use both pitch and rpm for control Fresh approach to propulsion control Marine Systems Engineering 33 Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • • Particle emission reduction (Geert van Rens, 2008) • • ECN, NLDA (Novem) Control strategies to avoid cavitation inception (Arthur Vrijdag, 2009) • • MARIN, NLDA RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA Wear in CPP propellors (Milinko Godjevac, 2010) • WPNL, NLDA Marine Systems Engineering 34 Ventilation of propeller in heavy seas CPP Hub Wear inspection Spindle friction Investigated case 300 200 torque [kNm] Testing machine for fretting 100 spindle 0 -100 0 100 200 300 -200 -300 deg. of rotation Marine Systems Engineering 35 friction Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • • Particle emission reduction (Geert van Rens, 2008) • • RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA Wear in CPP propellers (Milinko Godjevac, 2010) • • ECN, NLDA (Novem) Control strategies to avoid cavitation inception (Arthur Vrijdag, 2009) • • MARIN, NLDA WPNL, NLDA Concept design Naval Ships (van Oers, 2011) • NLDA, RNLN Marine Systems Engineering 36 Marine Systems Engineering 37 Recent PhD projects • Engine and ship manoeuvering model (Paul Schulten, 2005) • • Particle emission reduction (Geert van Rens, 2008) • • WPNL, NLDA Concept design Naval Ships (van Oers, 2011) • • RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA Wear in CPP propellers (Milinko Godjevac, 2010) • • ECN, NLDA (Novem) Control strategies to avoid cavitation inception (Arthur Vrijdag, 2009) • • MARIN, NLDA NLDA, RNLN DE Combustion in a mean value approach (Ding Yu, 2011) • TUD, NLDA Marine Systems Engineering 38 Mean value combustion modelling (Ding Yu) Marine Systems Engineering 39 Present PhD projects • Ultimate DP (Arjen Tjallema) • Bluewater, Imtech, TUD Marine Systems Engineering 40 uDP: Ultimate Dynamic Positioning (Arjen Tjallema) • Project initiated by Bluewater Energy Services • • Imtech • • • • • DP controller Modelling support MARIN • • FPSO operation DP capability software Additional tests and sensor modelling Supported by the Maritime Funds Also: Joint Industry Project with MARIN Marine Systems Engineering 41 Ultimate Intelligent control of dynamic positioning (Tjallema) DP system diagnostic system alarm sensors Consistency check dp computer call operator if suspect behaviour detected model based verification control signals 1.6 Proces s [y(t)] Model [ŷ(t)] res idual [r(t)] 1.2 value thres hold 0.8 fault detected 0.4 0.0 0 20 40 60 80 100 tim e Marine Systems Engineering 42 Present PhD projects • Ultimate DP (Arjen Tjallema) • • Bluewater, Imtech, TUD HVAC intelligent fault detection and control (Zheng Wei) • Imtech, Bluewater Marine Systems Engineering 43 Condition Monitoring & Fault diagnosis in HVAC systems (Zheng Wei) V pV1 p V2 r1 R1 ṁ i V1 V2 ṁR 1 R r2 V r1 r2 ṁo c2 c1 c1 c2 SYSTEM MONITORING Condition (Health) Monitoring REFERENCE MODEL ACTUAL state REFERENCE value Recording process cause fault Diagnosis process fault diagnosis SYMPTOM (error) TREND analysis Fault Diagnosis FAULT MODEL symptoms symptoms effect 3 1 1 3 1 2 d2 2 d1 3 1 2 d3 f1 1 3 1 3 1 3 FAULT (defect) identification LIFE Expectancy MODEL Knowledge database -p0 Analysis mechanism Life prediciton p0 p 2 d5 2 d6 2 d7 f2 Marine Systems Engineering 2 d4 v measurement 44 3 Present PhD projects • Ultimate DP (Arjen Tjallema) • • HVAC intelligent fault detection and control (Zheng Wei) • • Bluewater, Imtech, TUD Imtech, Bluewater Transient and part load emissions (Shi Wei) • IHC, Boskalis, TUD Marine Systems Engineering 45 Transient and part load emissions (Shi Wei) TYPICAL LOAD airplane yacht ro-ro dredger bulk carrier containership bus car truck electric train diesel train magnetic train motorcycle propeller plane jet plane 10 ship 1 0,1 land based vehicle 0,01 0,01 0,1 1 10 100 1000 2 Square-Froude number (V /g/L) Engine Command signal (n_engine_set) Disturbance (x) Governor Transmission system Shaft Rotation system n_engine Marine Systems Engineering n_engine n_shaft n_shaft T_prop Ship R_ship M_engine Propeller Q_prop Main Diesel Engine M _shaft S O2 (g/ton pay load -k m ) 100 Ship Translation system V_ship V_ship 46 Present PhD projects • Ultimate DP (Arjen Tjallema) • • HVAC intelligent fault detection and control (Zheng Wei) • • Imtech, Bluewater Transient and part load emissions (Shi Wei) • • Bluewater, Imtech, TUD IHC, Boskalis, TUD Concept design of energy systems (Peter de Vos) • RNLN, TUD, NLDA Marine Systems Engineering 47 Concept design of energy systems (Peter de Vos) Marine Systems Engineering 48 Present PhD projects • Ultimate DP (Arjen Tjallema) • • HVAC intelligent fault detection and control (Zheng Wei) • • IHC, Boskalis, TUD Concept design of energy systems (Peter de Vos) • • Imtech, Bluewater Transient and part load emissions (Shi Wei) • • Bluewater, Imtech, TUD RNLN, TUD, NLDA Influence on ship technology and ship owners’ and ship operators’ behavior of introduction of SOx and NOx emission control areas (Christer Wik) • Wärtsilä Marine Systems Engineering 49 Influence on technology and owners/operators behavior of SECA's and NECA's (Christer Wik) Marine Systems Engineering 50 Past MSE research projects • MarPower (5 FP) • Dyloprops: Dynamic Loads on Propellers (Senter NOVEM) • • • • Influence of Sea State (Ventilation) Wear aspects of CPP Consolidation of Diesel Engine model Integrated Control of DE and CPP Wärtsilä, MARIN, TUD, NLDA • EFIN shipping: Environmental Friendly INland shipping • Concept study for fuel cell driven inland ships (AES platform) Marine Systems Engineering 51 DYLOPROPS ṁ C TINL ṁ IC AC TAC TCOM COM 120 100 p INL M e a s u re d p re s s u re S m o o th e d p re s s u re M u lt iz o n e p r e s s u r e S e il ig e r p r e s s u r e p re s s u re [b a r] ṁ out TIR TCAC CAC p AC p IR TOR TCYL CYL ṁ T OR TTUR TUR Flow ṁ f p EXH p OR ME Work nE 80 ṁin IR M Comp 60 M Turb nC - 40 Rotor Dynamics nT + 1 2 I 20 nTC 0 200 250 300 350 c ra n k a n g le [d e g ] 400 450 Dyloprops seminar – 20th December 2006 - Drunen Marine Systems Engineering 52 Current MSE research projects • Smart Dredger (MIP) • Development of intelligent software for dredger control and monitoring IHC Merwede • E3-tug (SMI): Environmentally friendly, Economically viable and Efficient in operation • Design and future perspectives of hybrid harbour tugs Smit, Damen, Alewijnse, IMARES • Commercial drivetrain technology (HTAS-EVT) • Development of drive train technology for electric cars Innosys, Direct Current, TU-EWI • Future Pusher • To develop an improved pusher for the river Rhine ThyssenKrupp Veerhaven, DST, Scheepswerf Kooiman Marine Systems Engineering 53 Other MSE research projects • ADEPT (MIP): Advanced Energy and Emission Concepts on Ships Operating in the Coastal Zone • • Design and future perspectives of Short Sea Shipping Damen, Wärtsilä, Alewijnse, TNO, MARIN Hercules B (FP 7) • To increase engine efficiency, thus reduce fuel consumption and CO2 emissions. • • a.o. Wärtsilä, MAN, NTUA MoveIt (FP 7) • • To reduce gaseous & particulate emissions. To reduce environmental impact of inland shipping a.o. MARIN, DST, Via Donau, TNO RetroFit (FP 7) • To improve existing fleet for Short Sea Shipping a.o. MARIN, Marine Systems Engineering 54 Industry projects • • System integration offers many opportunities Problems always • • Multi disciplinary Close link to practical problems Marine Systems Engineering 55 Electric Lotus Elise • • With Innosys Engineering en Van der Kooi Challenges: • • • • Existing car Performance: 0-100 < 5 s (‘normal 5.2 s!) 6 month project duration Technical solution: • • • LiPo batteries PM motor Clever control system Marine Systems Engineering 56 Cooling channels under tug • • Cooling problems because of increased power Knowledge of: • • • • • Heat transfer Hydromechanics Engines Develop new concepts Small (BSc) research projects: • • Heat conductivity paint Cooling at high environmental temperatures Marine Systems Engineering 57 4. History & Future perspective Marine Systems Engineering 58 Marine Systems Engineering at TU Delft • Past • • • • Willem Vinke (from RNLN) Dijkshoorn (together with Shipping Management) Hans Klein Woud • 1985 – 1996: full chair TU Delft • 1996 – 2008: 0.5 chair TU Delft (+ Dean/Director of studies) Present • • • Douwe Stapersma • 1993 – 2000: 0.2 fte associate professor at TU Delft • 2000 – present: 0.2 fte professor at TU Delft (to be retired in June 2013) Hugo Grimmelius • 1993 – 1997: PhD student • 1997 – present: assistant professor Peter de Vos • 2008 – present: assistant professor Marine Systems Engineering 59 Marine System Engineering Achievements: people • MSc students • • • • Klein Woud delivered: ca 120 (?) Stapersma delivered: 49 • 29 Marine Engineering, • 20 Marine Diesel Engines 15 in progress PhD students: • 10 delivered • 6 at TU (Vucinic, Van der Nat, Grimmelius, Vrijdag, van Oers, Ding) • 3 at other research institutes (Van Hees - MARIN, Schulten - NLDA, Rens ECN) • • • 1 in industry (Godjevac - Wärtsilä) 5 in progress • 3 at TU (De Vos, Zheng, Shi - now IHC) • 2 in industry (Tjallema - Bluewater, Wik - Wärtsilä) 2 initiated Marine Systems Engineering 60 Marine System Engineering Achievements: impact • Publications • • • • Books: Marine Propulsion • • • Klein Woud: 4 Journal, 45 Congres papers Stapersma: 16 Journal, 60 Congres papers Grimmelius: 5 Journal, 59 Congres papers Design of Propulsion & Electric Power Generation Systems Design of Auxiliary Systems, Shafting and Flexible mounting Systems (to be published) HME courses • • Marine Propulsion Auxiliary Systems Marine Systems Engineering 61 Marine System Engineering Achievements: (recent) projects • Contribution national research projects • • • • • • • • Contribution European projects • • • • Dyloprops Adept EFIN shipping SmartDredger E3-Tug Commercial drivetrain technology (HTAS-EVT) Inland shipping: IDVV projects & Boeggolf (A’dam) Hercules B MoveIt! Retrofit Contribution industry projects • With Damen, MARIN, ThyssenKrupp Veerhaven a.o. Marine Systems Engineering 62 Marine Systems Engineering Role of the university • • Communication between specialists calls for interpreters who speak the different ‘languages’ University and industry have to work together • • Industry has commercial interest Open in case of pre-competitive • Publication of results is important (PhD thesis!) • University must maintain own identity and independence • • • Memory and conscience of science & society Education of engineers with a critical attitude Autonomous research ‘for the good of society’ Marine Systems Engineering 63 Marine System Engineering Technical issues • Classical Mechanical Engineering • • • • Electric conversion and equipment becomes even more important: • • • • Gas, nuclear, alternative fuels, energy storage (batteries), fuel cells SCR, Scrubbers Chemical knowledge gets more important in view of: • • • Electric machine /Power electronics Hydraulic actuation remains vital in many systems Fuels & emissions change the world: • • Mechanics and Dynamics are the core Flow mechanics and heat transfer are also basic Energy conversion and thus thermodynamics is essential Emissions Electrochemical conversions Monitoring & Control are the glue of system engineering Marine Systems Engineering 64 Marine System Engineering The wider issues • • System integration becomes vitally important Suppliers change from component manufacturers to system integrators: • • • International: Rolls-Royce, Wärtsilä, MAN National: Damen, IHC, Huisman Itrec, Imtech, Bakker Sliedrecht, Alewijnse, Design for operations • • Include variability of operational conditions • Off design performance • Dynamic performance Probabilistic approach also for design of energy systems • • Challenge: proper stochastic description of operational profile Not only design but also maintenance aspects • Wear mechanisms such as mechanical and thermal load Marine Systems Engineering 65 Marine System Engineering Mission • Good balance between • • • practical engineering use of fundamental knowledge Research in strong cooperation with industry • • • MSC and PhD students in industry Industry as a "floating" laboratory Some facilities at NLDA Marine Systems Engineering 66 Marine Systems Engineering The way to the future • Presently • • • • • Chair Marine Engineering not in 1st financial stream Associate professor (UHD) not yet appointed 2nd assistant professor will be attracted Part time full professor to retire in 2013 Alternatives • Do nothing. • Then ultimately and hopefully the field will be led by an Associate Professor (UHD) with 2 assistant professors • • Find support to augment the associate professor to full professor • Authority in the field, national and international • Independency for PhD supervision Find part-time (industry based) professor in addition to TU staff Marine Systems Engineering 67 5. Wisdom Marine Systems Engineering 68 Stellingen • Martin van Hees (1997) • • • Het ontwikkelen van rekenmodellen ten behoeve van conceptuele ontwerpstudies kan worden teruggebracht tot het verzamelen en onderhouden van modelfragmenten en hun eigenschappen. Het samenvoegen tot modellen, traditioneel een programmeeractiviteit, kan op effectieve wijze worden gegeneraliseerd, waardoor men zich kan concentreren op de kwaliteit en geldigheid van de modelfragmenten. We beschikken over meer kennis dan we weten. De grote uitdaging van de kennistechnologie is om optimaal gebruik te maken van de sterke kanten van mens en machine. Door de mens niet alleen als gebruiker te beschouwen, maar als uiterst bruikbaar onderdeel van een kennissysteem kunnen krachtige en flexibele oplossingen worden gerealiseerd Marine Systems Engineering 69 Stellingen • Clemens van Der Nat (1999) • • • Door ontwerpkennis van de toepassing te scheiden wordt het mogelijk alternatieve ontwerpoplossingen te exploreren zonder aanwezige kennis opnieuw te implementeren. Een ontwerper hoort alleen vertrouwen te hebben in een antwoord van een ontwerpmodel indien de algorithmen in het model aan hem bekend zijn (geworden). Een computerondersteund gereedschap moet zich herhaalbaar gedragen, een ontwerper niet. Marine Systems Engineering 70 Stellingen • Hugo Grimmelius (2005) • • • • Ten einde de juiste richting te behouden is het onderzoeken van vele zijpaden, zonder daarin te verdwalen, essentieel voor alle vormen van onderzoek. Het ontwikkelen van een simulatiemodel kan een doel op zich zijn De "missing link" in de technische evolutie is vaak te vinden tussen wetenschap en vakmanschap. Deeltijd hoogleraren zijn "geen tijd" hoogleraren. Marine Systems Engineering 71 Stellingen • Paul Schulten (2005) • • • De uitvoer van een complex model kan niet eenvoudig gededuceerd worden uit de onafhankelijke analyses van de diverse deelmodellen. Ook voor complexe systemen en modellen geldt dus dat het totaal meer is dan de som der delen. De onzekerheidsanalyse is bedoeld om de betrouwbaarheid van een model te bepalen. Minstens zo belangrijk is de betrouwbaarheid van de onzekerheidsanalyses. Naast gestructureerde documenten is bij het construeren van complexe simulatiemodellen de mondelinge communicatie tussen diverse specialisten van essentieel belang. Marine Systems Engineering 72 Propositions • Paul Schulten (2005) • • • The results of a complex model cannot easily be deduced from independent analysis of the various sub-models Therefore also for complex technical systems and models the whole is more than the sum of the parts. Uncertainty analysis is meant to asses the reliability of a model. Just as important is the reliability of the uncertainty analysis. Apart form structured documents oral communication between various specialists is essential when constructing complex simulation models. Marine Systems Engineering 73 Stellingen • Geert van Rens (2008) • • Wetenschappers dienen meer tijd te besteden aan het voorlichten van niet-ingewijden door onwaarheden in hun vakgebied te ontkrachten en halve waarheden te nuanceren. Een van de grootste uitdagingen op fundamenteel wetenschappelijk gebied is om fenomenen op mesoschaal fundamenteel te beschrijven met theorieen die op moleculaire schaal of macroscopische schaal gelden. Marine Systems Engineering 74 Propositions • Geert van Rens (2008) • • Scientists should spent more time informing the public in their field of expertise by proving false statements wrong and refining partly true statements. One of the biggest challenges in fundamental science is a proper description of phenomena on a meso-scale using theories from micro and/or macro scale. Marine Systems Engineering 75 Stellingen • Arthur Vrijdag (2008) • • • Simulatieprogramma's moeten beoordeeld worden volgens het principe "schuldig totdat het tegendeel bewezen is". Goede, praktisch bruikbare simulatiemodellen moeten worden ontwikkeld volgens het principe "zo simpel mogelijk, zo complex als noodzakelijk". Een model waarvan bij de ontwikkeling de doelen nog niet vast staan kan dus niet goed zijn. Het welbewust nemen van risico moet in de wetenschap aangemoedigd worden: "Als je alles onder controle lijkt te hebben, ga je gewoon niet hard genoeg" (Mario Andretti, raceautocoureur). Marine Systems Engineering 76 Propositions • Arthur Vrijdag (2008) • • • Simulation tools should be judged according to the principle "guilty unless proven otherwise". Good, practical lyapplicable simulationmodels should be developed according to the principle "as simple as possible, as complex as necessary". A model of which the goals have not been properly set during the development phase , can thus not be a good model. In science the taking of calculated risk should be encouraged: "If everything seems under control, you're just going not fast enough" (Mario Andretti, race car driver). Marine Systems Engineering 77 Stellingen • Milinko Godjevac (2009) • • • Vanwege de complexiteit van de natuur is een multidisciplinaire aanpak van cruciaal belang in het ontwerp en innovatie. Bovendien komt dit in hoge mate tegemoet aan de menselijke nieuwsgierigheid. Ingenieurs moeten zaken eenvoudig houden om succesvol te zijn: "Een ontwerper weet dat de perfectie is bereikt niet als er niet meer is toe te voegen, maar als er niets meer is om weg te nemen" (Antoine de Saint-Exupery). Hoewel de wiskunde onvolledig is (Gödel), kunnen alle andere wetenschappen nog steeds niet zonder haar. Marine Systems Engineering 78 Propositions • Milinko Godjevac (2009) • • • Due to nature's complexity, a multidisciplinary approach is crucial for research and innovation. Moreover it fits best to human curiosity. Engineers must keep things simple in order to be succesful: "A designer knows he has achieved perfection not when there is nothing to add, but when there is nothing left to take away" (Antoine de Saint-Exupery). Although mathematics is incomplete (Gödel), all other sciences still need it. Marine Systems Engineering 79 Stellingen • Bart van Oers (2011) • • • De essentie van scheepsontwerpen is niet het positioneren van de systemen zelf, maar het vinden van innovatieve oplossingen (bijv. nieuwe systemen en voorspellingsmodulen) die een vernieuwende indelingen mogelijk maken. Zowel optimalisatie algorithmen als ontwerpers kunnen zoeken naar geschikte ontwerpen; echter slechts fysica, voorspellingsvermogen en ontwerpeisen bepalen voor beiden of ze iets zullen vinden. "Design" drivers zijn problemen die ontwerpers zelf veroorzaken. Marine Systems Engineering 80 Propositions • Bart van Oers (2011) • • • The essence of ship design lies in the creation of innovative solutions (such as novel systems and prediction tools) that enable the generation of innovative arrangements, not the positioning of the systems itself. Both optimisation algorithms and ship designers can search for suitable ship designs. However solely the combination of physics, the ability to predict and the design requirements determines for both whether such a search yield results. "Design" drivers are problems of the naval architect's own making. Marine Systems Engineering 81 Stellingen • Ding Yu (2011) • • Telkens wanneer metingen en berekeningen worden gecorreleerd moet aan beide getwijfeld worden. Het is niet erg waarschijnlijk dat beiden juist zijn, maar aannemen dat beide fout zijn leidt nergens toe. De enige oplossing is één van beide voor waar aan te nemen en met die aanname de juistheid van de andere te testen. Universiteiten moeten zich richten op theoretisch werk, maar essentiële experimenten zijn steeds nodig om nieuwe ideëen en benaderingswijzen te verifiëren. Daarom moeten universiteiten beschikken over test faciliteiten, zowel voor het onderwijs als voor het valideren van theoretisch onderzoek. Marine Systems Engineering 82 Propositions • Ding Yu (2011) • • At every stage of correlating measurements with calculations either should be doubted. Assuming both to be correct is not very plausible. The only way out is to assume one of them right and with that test the correctness of the other. Universities should focus on theoretical work, but essential experiments are still required to verify new ideas or approaches. Therefore universities should have test facilities, both for the students education and for validating theoretical research. Marine Systems Engineering 83 Propositions • Douwe Stapersma • • • There are two possible aims for simulations • A: to get an accurate numerical answer: calculate! • B: to get a global insight: comprehend! For calculating • Black box models are fine • Sophisticated first principle models tools (CFD, FEM) also. For comprehending: • First principle models! • But reality must be simplified. This is often more difficult then using sophisticated models Marine Systems Engineering 84 Stellingen • Hugo Grimmelius • • Douwe Stapersma • • Elk model is fout. x=1 is ook een model. Cees Tromp • Ontwikkelen van theorieën is leuk. Meten is ook leuk. Beide samen is een nachtmerrie. Marine Systems Engineering 85 Propositions • Wolfgang Pauli • • Theodore von Karman • • Science is sometimes right, often wrong or even completely wrong. Some science is not even wrong. ("Nicht einmal falsch" ) There is nothing so practical as a good theory. Sir Robert Hill • Whoever is not prepared to produce a lot of waste will never produce anything useful. Marine Systems Engineering 86 6. Discussion Marine Systems Engineering 87