Download Marine Systems Engineering At Delft University of Technology

Document related concepts
no text concepts found
Transcript
Marine Systems Engineering
At Delft University of Technology
Prof. Douwe Stapersma & Dr. Hugo Grimmelius
5-12-13
Delft
University of
Technology
Challenge the future
Marine Systems Engineering
1
1.
Introduction
Marine Systems Engineering
2
Delft University of Technology
Delft University of Technology was
founded in 1842 by King William II.
It is the oldest and largest
University of Technology in the
Netherlands.
The 8 faculties offer 16 Bachelor’s
courses and 29 Master’s courses in
comprehensive programmes of
education and research.
Marine Systems Engineering
Flame of Prometheus
Stealing fire from the gods,
giving it to man, Prometheus
gave technology and development
to mankind.
3
Faculty 3ME
Dean
Departments:
Process &
Energy
Management
Support
Secretarial
Support
Personnel &
Organization
Marketing &
Communications
Finance &
Control
Education &
Students
Facility
Management
Information- &
Comms
Technology
Precision &
Delft Center
Mechatronics for Systems &
Engineering
Control
Maritime &
Transport
Technology
Marine Systems Engineering
Materials
Science &
Engineering
BioMedical
Engineering
4
Department
Marine & Transport Technology
Prof Dr ir Lodewijks
Head of
Department
MTT
Department
Support
Marine Technology
Section
Ship Hydromechanics
& Structures
Prof Dr ir Huijsmans
Section
Ship Design,
Production &
Operations
Prof ir Hopman
Section
Offshore &
Dredging
Engineering
Prof ir Van Ree
Marine Systems Engineering
Section
Transport
Engineering &
Logistics
Prof Dr ir Lodewijks
5
Ship Design, Production & Operation
Prof ir Hopman
Marine Systems
Engineering
Prof ir Stapersma
Ship Design
Prof ir Hopman
Head of
Section
SDPO
Ship Production
Vacant
Marine Systems Engineering
Ship Operation
Prof Dr van de Voorde
6
Marine Systems Engineering
•
MSE group consisting of:
•
•
•
•
•
Douwe Stapersma (Prof, also NLDA)
Hugo Grimmelius (Ass Prof)
Peter de Vos (Ass Prof)
Roelf van Till (Instructor)
5 PhD researchers
•
3 at the university
•
2 external
Marine Systems Engineering
7
MSE
MEGAtronica
Introduction
MSE focuses on the design aspects of complex,
assembled mechanical and electric systems
For example for:
•
Ships, especially complex specials
•
Combined heat power plants
•
Vehicles
•
Complex components
Marine Systems Engineering
8
System integration
Wide (system level) vs deep (component level)
“As broad as possible, as detailed as necessary”
•
•
Multi disciplinary
•
•
Mechanical, Electrical, Chemical
Design, Operation, Maintenance
Werktuigkunde
vs. Werktuigbouw kunde
•
Cooperation with industry
•
•
•
Close link to practical problems
Access to (ship) installations
Compensates lack of laboratory facilities
Marine Systems Engineering
9
2.
Education
Marine Systems Engineering
10
Marine Systems Engineering
•
MSE group gives courses in:
•
•
•
at Bachelor level:
•
Marine Engineering (mtp103, mt219)
•
Matlab and Simulation (wb3220)
•
Combined Power and Heat plant design project (mtp212)
•
Electric components and networks (mt3406)
at Master of Science level
•
Maintenance & Reliability (mt213)
•
Mechatronics for Marine Technology (mt218)
•
Diesel Engines (wb4408a/b)
•
Introduction DP systems (oe5663)
Post graduate courses for HME
•
Marine Propulsion
•
Auxiliary Systems
Marine Systems Engineering
11
Education
Marine Technology
•
BSc
•
•
Increasing Inflow: 50 > 75 students
2 MSc tracks; 7 specialisations:
•
•
Science
•
Ship Hydromechanics
•
Ship & Offshore structures
•
Ship Resistance & Propulsion
Joint MSc programme
with
NTNU/Trondheim
(since Sept 2007)
Ship Design, Production & Operation (SDPO)
•
Ship Design
•
Marine Engineering
•
Shipping Management
•
Ship Production
Marine Systems Engineering
12
Education
Mechanical Engineering
•
BSc
•
•
Increasing Inflow: 250 > 500 students
Many MSc tracks
•
•
•
…
Transport Engineering
•
Transport Engineering Logistics (TEL)
•
(Production Engineering Logistics (PEL))
•
Mechanical Systems Integration (MSI)
•
(Diesel Engines (DE))
…
Marine Systems Engineering
13
Educational structure
Bachelor of Science
•
•
•
•
•
•
•
3 year (3 x 60 EC = 3 x 60 x 28 hrs of study load))
Basic mathematics and physics
Applied physics (flow dynamics, mechanical dynamics,
strength & deformations, thermodynamics)
Introduction in design & technology subjects
One minor (30 EC)
Several projects (group assignments)
One BSc research assignment (10 EC)
Marine Systems Engineering
14
Educational structure
Master of Science
•
•
2 year (2 x 60 EC)
1st year:
•
•
•
subjects in chosen track
partly compulsory, partly selectives
2nd year
•
•
Industrial assignment
MSc research assignment (40 to 50 EC)
•
independent research
•
"new" subjects
Marine Systems Engineering
15
Some examples of MSc research
•
MSc thesis preferably
•
•
In line with ongoing projects
•
Support for contract research
•
Support for PhD research
Exploration of new areas, preparation for PhD research
Marine Systems Engineering
16
Nuclear Short Sea Shipping
Marine Systems Engineering
17
Cost prediction model for engine room
engineering & outfitting
Placement of
remaining
components
5%
Remaining work
5%
Placement of
engine line 10%
Piping 50%
Commisioning
13%
Installation of
shaft and
propeller 17%
Transportation effort:
f(d, l, m, n, nr, tp)
To/from the ship
Type of transportation
(crane, lorry, etc)
f(d, l, m, n, nr)
Marine Systems Engineering
Type of positioning
(on deck, on foundation,on unit)
f(d, l, m, n)
Inside the ship
Number of transships
Etc.
f(d, l, m, nr, tp)
18
Dynamic behaviour of Controllable Pitch
Propellers
Command
Engine
Control
System
Propulsion
Control
System
Pitch
Control
System
fuel rack
Diesel Eng M
Gas turbine
pitch
Q Propeller
-
+
Rotor
Dynamics
1
2I

Torque
Disturbances
Propeller T
Thrust

R
1
m
n
n

Ship
Resistance
-
+

Ship
Translation
Dynamics
vs
va
1-w
Disturbances
[-]
z-axis (spindle axis)
0
H 2
10
[- ]
Q
Y
/Q
QST
(a b s ) ; (d e g )
Q Y /Q
Mx
FNx
y-axis
FAX,res
2 /Q
x-axis (shaft axis)
H
FP
p
FNy
H 2
My
[b a r/(l/m in )]
MRes
H 2
Fz
180
135
90
45
0
10
0
C
C
C
C
C
-2
10
90
45
0
-4 5
-9 0
10
-1
10
0
10
1
BV
BV
BV
BV
BV
=
=
=
=
=
0
2
5
8
1
.8 1
.6 3
.4 5
1 .3
10
2
F re q u e n c y (H z )
Marine Systems Engineering
19
Influence of propulsion system on
manoeuvring capabilities
Marine Systems Engineering
20
3.
Research
Marine Systems Engineering
21
Research department M&TT
•
•
•
Intelligent Marine, Transport and Production Processes
(IMTPP)
Design for Service (DfS)
Innovative Design of Marine and Transport Concepts
(IDMTC)
Marine Systems Engineering
22
Research Marine Systems Engineering
(together with NLDA)
•
•
•
Design for Service
Main focus: complex systems, not individual components
Areas:
•
•
•
•
•
Dynamic behaviour
Maintenance engineering
Concept exploration & design
Emissions and fuels
Common factors of interest:
•
•
Effects on system integration
Influence of system integration
Marine Systems Engineering
23
System integration
Wide (system level) vs deep (component level)
“As broad as possible, as detailed as necessary”
•
•
Multi disciplinary
•
•
•
Mechanical, Electrical, Chemical,
Design, Operation, Maintenance
Cooperation with industry
•
•
•
•
Wärtsilä, IHC, Damen, Boskalis, Imtech, Alewijnse, etc.
Close link to practical problems
Access to (ship) installations
Compensates lack of laboratory facilities
Marine Systems Engineering
24
Past PhD projects
•
MA-CAD: Maintenance Concept Adjustment & Design (Bojan
Vucinic, 1994)
•
•
Quaestor: Expert governed parametric model assembling (Martin
van Hees, 1997)
•
•
MARIN, TUD
Conceptual design of submarines (Clemens van der Nat, 1999)
•
•
RNLN, Nedlloyd
RDM, NLDA, TUD
Condition monitoring of CRP (Hugo Grimmelius, 2005)
•
Van Buuren – Van Swaay (now Imtech)
Marine Systems Engineering
25
Concept design of submarines
(van der Nat)
no
Sizing
ok?
Balancing
yes
Loa
PMEM
Performance
Vburst
no
Marine Systems Engineering
ok?
yes
26
Condition monitoring for CRP
(Grimmelius)
Compression
Refrigeration
Plant
Modelling
1
 q, R1 (W R1 )
pV1
pV2
R1
TV1
Ti
m, i
Implementation
TV2
TR1
4
 m, o
V2
m, R1
V1
 q, V2
 q,V1
2
3
Matching & validation
Results
5
θsub [°C]
4
D (sim)
3
D (m)
A (sim)
A (m)
2
matched
1
0
5.0
7.0
9.0
imcond
11.0
13.0
15.0
[kg]
Marine Systems Engineering
27
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
MARIN, NLDA
Marine Systems Engineering
28
Marine Systems Engineering
29
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
•
MARIN, NLDA
Particle emission reduction (Geert van Rens, 2008)
•
ECN, NLDA (Novem)
Marine Systems Engineering
30
(van Rens)
Marine Systems Engineering
31
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
•
Particle emission reduction (Geert van Rens, 2008)
•
•
MARIN, NLDA
ECN, NLDA (Novem)
Control strategies to avoid cavitation inception (Arthur
Vrijdag, 2009)
•
RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA
Marine Systems Engineering
32
[-]
Command
0
/Q
H 2
10
p
H
2 /Q
H 2
[b a r /( l /m i n ) ]
(a b s ) ; (d e g )
Q Y /Q
H 2
[-]
Q
Y
Engine
Control
System
180
135
Diesel Eng M
Gas turbine
0
C
C
C
C
C
-2
10
90
45
0
-4 5
-9 0
10
Pitch
Control
System
fuel rack
90
45
0
10
Propulsion
Control
System
-1
10
0
10
1
BV
BV
BV
BV
BV
=
=
=
=
=
0
2
5
8
1
Q Propeller
-
+
Rotor
Dynamics
.8 1
.6 3
.4 5
1 .3
pitch
1
2I
n
10

Torque
Disturbances
Propeller T
Thrust
R
-
+

1
m
n

va

Ship
Resistance
Ship
Translation
Dynamics
vs
1-w
2
Disturbances
F re q u e n c y (H z )
CPP control dynamics vs system dynamics
Use both pitch and
rpm for control
Fresh approach to propulsion control
Marine Systems Engineering
33
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
•
Particle emission reduction (Geert van Rens, 2008)
•
•
ECN, NLDA (Novem)
Control strategies to avoid cavitation inception (Arthur
Vrijdag, 2009)
•
•
MARIN, NLDA
RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA
Wear in CPP propellors (Milinko Godjevac, 2010)
•
WPNL, NLDA
Marine Systems Engineering
34
Ventilation of
propeller in
heavy seas
CPP Hub
Wear
inspection
Spindle
friction
Investigated case
300
200
torque [kNm]
Testing
machine
for fretting
100
spindle
0
-100
0
100
200
300
-200
-300
deg. of rotation
Marine Systems Engineering
35
friction
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
•
Particle emission reduction (Geert van Rens, 2008)
•
•
RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA
Wear in CPP propellers (Milinko Godjevac, 2010)
•
•
ECN, NLDA (Novem)
Control strategies to avoid cavitation inception (Arthur
Vrijdag, 2009)
•
•
MARIN, NLDA
WPNL, NLDA
Concept design Naval Ships (van Oers, 2011)
•
NLDA, RNLN
Marine Systems Engineering
36
Marine Systems Engineering
37
Recent PhD projects
•
Engine and ship manoeuvering model (Paul Schulten, 2005)
•
•
Particle emission reduction (Geert van Rens, 2008)
•
•
WPNL, NLDA
Concept design Naval Ships (van Oers, 2011)
•
•
RNLN, RAN, RCN, MARIN, WPNL, IMTECH, NLDA
Wear in CPP propellers (Milinko Godjevac, 2010)
•
•
ECN, NLDA (Novem)
Control strategies to avoid cavitation inception (Arthur
Vrijdag, 2009)
•
•
MARIN, NLDA
NLDA, RNLN
DE Combustion in a mean value approach (Ding Yu, 2011)
•
TUD, NLDA
Marine Systems Engineering
38
Mean value combustion modelling (Ding Yu)
Marine Systems Engineering
39
Present PhD projects
•
Ultimate DP (Arjen Tjallema)
•
Bluewater, Imtech, TUD
Marine Systems Engineering
40
uDP: Ultimate Dynamic Positioning
(Arjen Tjallema)
•
Project initiated by Bluewater Energy Services
•
•
Imtech
•
•
•
•
•
DP controller
Modelling support
MARIN
•
•
FPSO operation
DP capability software
Additional tests and sensor modelling
Supported by the Maritime Funds
Also: Joint Industry Project with MARIN
Marine Systems Engineering
41
Ultimate Intelligent control of dynamic
positioning (Tjallema)
DP system
diagnostic system
alarm
sensors
Consistency check
dp computer
call operator if suspect
behaviour detected
model based verification
control signals
1.6
Proces s [y(t)]
Model [ŷ(t)]
res idual [r(t)]
1.2
value
thres hold
0.8
fault detected
0.4
0.0
0
20
40
60
80
100
tim e
Marine Systems Engineering
42
Present PhD projects
•
Ultimate DP (Arjen Tjallema)
•
•
Bluewater, Imtech, TUD
HVAC intelligent fault detection and control (Zheng Wei)
•
Imtech, Bluewater
Marine Systems Engineering
43
Condition Monitoring & Fault diagnosis in HVAC
systems (Zheng Wei)
V
pV1
p V2
r1
R1
ṁ i
V1
V2
ṁR 1
R
r2
V
r1
r2
ṁo
c2
c1
c1
c2
SYSTEM
MONITORING
Condition
(Health)
Monitoring
REFERENCE MODEL
ACTUAL state
REFERENCE value
Recording process
cause
fault
Diagnosis process
fault
diagnosis
SYMPTOM (error)
TREND analysis
Fault
Diagnosis
FAULT MODEL
symptoms
symptoms
effect
3 1
1
3 1
2
d2
2
d1
3 1
2
d3
f1
1
3 1
3 1
3
FAULT (defect) identification
LIFE Expectancy MODEL
Knowledge
database
-p0
Analysis
mechanism
Life prediciton
p0
p
2
d5
2
d6
2
d7
f2
Marine Systems Engineering
2
d4
v
measurement
44
3
Present PhD projects
•
Ultimate DP (Arjen Tjallema)
•
•
HVAC intelligent fault detection and control (Zheng Wei)
•
•
Bluewater, Imtech, TUD
Imtech, Bluewater
Transient and part load emissions (Shi Wei)
•
IHC, Boskalis, TUD
Marine Systems Engineering
45
Transient and part load emissions (Shi Wei)
TYPICAL LOAD
airplane
yacht
ro-ro
dredger
bulk carrier
containership
bus
car
truck
electric train
diesel train
magnetic train
motorcycle
propeller plane
jet plane
10
ship
1
0,1
land based vehicle
0,01
0,01
0,1
1
10
100
1000
2
Square-Froude number (V /g/L)
Engine
Command signal
(n_engine_set)
Disturbance
(x)
Governor
Transmission
system
Shaft
Rotation
system
n_engine
Marine Systems Engineering
n_engine
n_shaft
n_shaft
T_prop
Ship
R_ship
M_engine
Propeller
Q_prop
Main
Diesel
Engine
M _shaft
S O2 (g/ton pay load -k m )
100
Ship
Translation
system
V_ship
V_ship
46
Present PhD projects
•
Ultimate DP (Arjen Tjallema)
•
•
HVAC intelligent fault detection and control (Zheng Wei)
•
•
Imtech, Bluewater
Transient and part load emissions (Shi Wei)
•
•
Bluewater, Imtech, TUD
IHC, Boskalis, TUD
Concept design of energy systems (Peter de Vos)
•
RNLN, TUD, NLDA
Marine Systems Engineering
47
Concept design of energy systems
(Peter de
Vos)
Marine Systems Engineering
48
Present PhD projects
•
Ultimate DP (Arjen Tjallema)
•
•
HVAC intelligent fault detection and control (Zheng Wei)
•
•
IHC, Boskalis, TUD
Concept design of energy systems (Peter de Vos)
•
•
Imtech, Bluewater
Transient and part load emissions (Shi Wei)
•
•
Bluewater, Imtech, TUD
RNLN, TUD, NLDA
Influence on ship technology and ship owners’ and ship
operators’ behavior of introduction of SOx and NOx
emission control areas (Christer Wik)
•
Wärtsilä
Marine Systems Engineering
49
Influence on technology and owners/operators behavior
of SECA's and NECA's
(Christer Wik)
Marine Systems Engineering
50
Past MSE research projects
•
MarPower (5 FP)
•
Dyloprops: Dynamic Loads on Propellers (Senter NOVEM)
•
•
•
•
Influence of Sea State (Ventilation)
Wear aspects of CPP
Consolidation of Diesel Engine model
Integrated Control of DE and CPP
Wärtsilä, MARIN, TUD, NLDA
•
EFIN shipping: Environmental Friendly INland shipping
•
Concept study for fuel cell driven inland ships
(AES platform)
Marine Systems Engineering
51
DYLOPROPS
ṁ C
TINL
ṁ IC
AC
TAC
TCOM
COM
120
100
p INL
M e a s u re d p re s s u re
S m o o th e d p re s s u re
M u lt iz o n e p r e s s u r e
S e il ig e r p r e s s u r e
p re s s u re [b a r]
ṁ out
TIR
TCAC
CAC
p AC
p IR
TOR
TCYL
CYL
ṁ T
OR
TTUR
TUR
Flow
ṁ f
p EXH
p OR
ME
Work
nE
80
ṁin
IR
M Comp
60
M Turb
nC
-
40
Rotor
Dynamics
nT
+
1
2 I

20
nTC
0
200
250
300
350
c ra n k a n g le [d e g ]
400
450
Dyloprops seminar – 20th December 2006 - Drunen
Marine Systems Engineering
52
Current MSE research projects
•
Smart Dredger (MIP)
•
Development of intelligent software for dredger control and monitoring
IHC Merwede
•
E3-tug (SMI): Environmentally friendly, Economically viable and Efficient
in operation
•
Design and future perspectives of hybrid harbour tugs
Smit, Damen, Alewijnse, IMARES
•
Commercial drivetrain technology (HTAS-EVT)
•
Development of drive train technology for electric cars
Innosys, Direct Current, TU-EWI
•
Future Pusher
•
To develop an improved pusher for the river Rhine
ThyssenKrupp Veerhaven, DST, Scheepswerf Kooiman
Marine Systems Engineering
53
Other MSE research projects
•
ADEPT (MIP): Advanced Energy and Emission Concepts on Ships
Operating in the Coastal Zone
•
•
Design and future perspectives of Short Sea Shipping
Damen, Wärtsilä, Alewijnse, TNO, MARIN
Hercules B (FP 7)
•
To increase engine efficiency, thus reduce fuel consumption and CO2
emissions.
•
•
a.o. Wärtsilä, MAN, NTUA
MoveIt (FP 7)
•
•
To reduce gaseous & particulate emissions.
To reduce environmental impact of inland shipping
a.o. MARIN, DST, Via Donau, TNO
RetroFit (FP 7)
•
To improve existing fleet for Short Sea Shipping
a.o. MARIN,
Marine Systems Engineering
54
Industry projects
•
•
System integration offers many opportunities
Problems always
•
•
Multi disciplinary
Close link to practical problems
Marine Systems Engineering
55
Electric Lotus Elise
•
•
With Innosys Engineering en Van der Kooi
Challenges:
•
•
•
•
Existing car
Performance: 0-100 < 5 s (‘normal 5.2 s!)
6 month project duration
Technical solution:
•
•
•
LiPo batteries
PM motor
Clever control system
Marine Systems Engineering
56
Cooling channels under tug
•
•
Cooling problems because of increased power
Knowledge of:
•
•
•
•
•
Heat transfer
Hydromechanics
Engines
Develop new concepts
Small (BSc) research projects:
•
•
Heat conductivity paint
Cooling at high environmental temperatures
Marine Systems Engineering
57
4.
History & Future perspective
Marine Systems Engineering
58
Marine Systems Engineering
at TU Delft
•
Past
•
•
•
•
Willem Vinke (from RNLN)
Dijkshoorn (together with Shipping Management)
Hans Klein Woud
•
1985 – 1996: full chair TU Delft
•
1996 – 2008: 0.5 chair TU Delft (+ Dean/Director of studies)
Present
•
•
•
Douwe Stapersma
•
1993 – 2000: 0.2 fte associate professor at TU Delft
•
2000 – present: 0.2 fte professor at TU Delft (to be retired in June 2013)
Hugo Grimmelius
•
1993 – 1997: PhD student
•
1997 – present: assistant professor
Peter de Vos
•
2008 – present: assistant professor
Marine Systems Engineering
59
Marine System Engineering
Achievements: people
•
MSc students
•
•
•
•
Klein Woud delivered: ca 120 (?)
Stapersma delivered: 49
•
29 Marine Engineering,
•
20 Marine Diesel Engines
15 in progress
PhD students:
•
10 delivered
•
6 at TU (Vucinic, Van der Nat, Grimmelius, Vrijdag, van Oers, Ding)
•
3 at other research institutes (Van Hees - MARIN, Schulten - NLDA, Rens ECN)
•
•
•
1 in industry (Godjevac - Wärtsilä)
5 in progress
•
3 at TU (De Vos, Zheng, Shi - now IHC)
•
2 in industry (Tjallema - Bluewater, Wik - Wärtsilä)
2 initiated
Marine Systems Engineering
60
Marine System Engineering
Achievements: impact
•
Publications
•
•
•
•
Books: Marine Propulsion
•
•
•
Klein Woud: 4 Journal, 45 Congres papers
Stapersma: 16 Journal, 60 Congres papers
Grimmelius: 5 Journal, 59 Congres papers
Design of Propulsion & Electric Power Generation Systems
Design of Auxiliary Systems, Shafting and Flexible mounting
Systems (to be published)
HME courses
•
•
Marine Propulsion
Auxiliary Systems
Marine Systems Engineering
61
Marine System Engineering
Achievements: (recent) projects
•
Contribution national research projects
•
•
•
•
•
•
•
•
Contribution European projects
•
•
•
•
Dyloprops
Adept
EFIN shipping
SmartDredger
E3-Tug
Commercial drivetrain technology (HTAS-EVT)
Inland shipping: IDVV projects & Boeggolf (A’dam)
Hercules B
MoveIt!
Retrofit
Contribution industry projects
•
With Damen, MARIN, ThyssenKrupp Veerhaven a.o.
Marine Systems Engineering
62
Marine Systems Engineering
Role of the university
•
•
Communication between specialists calls for interpreters
who speak the different ‘languages’
University and industry have to work together
•
•
Industry has commercial interest
Open in case of pre-competitive
•
Publication of results is important (PhD thesis!)
•
University must maintain own identity and independence
•
•
•
Memory and conscience of science & society
Education of engineers with a critical attitude
Autonomous research ‘for the good of society’
Marine Systems Engineering
63
Marine System Engineering
Technical issues
•
Classical Mechanical Engineering
•
•
•
•
Electric conversion and equipment becomes even more important:
•
•
•
•
Gas, nuclear, alternative fuels, energy storage (batteries), fuel cells
SCR, Scrubbers
Chemical knowledge gets more important in view of:
•
•
•
Electric machine /Power electronics
Hydraulic actuation remains vital in many systems
Fuels & emissions change the world:
•
•
Mechanics and Dynamics are the core
Flow mechanics and heat transfer are also basic
Energy conversion and thus thermodynamics is essential
Emissions
Electrochemical conversions
Monitoring & Control are the glue of system engineering
Marine Systems Engineering
64
Marine System Engineering
The wider issues
•
•
System integration becomes vitally important
Suppliers change from component manufacturers to system
integrators:
•
•
•
International: Rolls-Royce, Wärtsilä, MAN
National: Damen, IHC, Huisman Itrec, Imtech, Bakker Sliedrecht,
Alewijnse,
Design for operations
•
•
Include variability of operational conditions
•
Off design performance
•
Dynamic performance
Probabilistic approach also for design of energy systems
•
•
Challenge: proper stochastic description of operational profile
Not only design but also maintenance aspects
•
Wear mechanisms such as mechanical and thermal load
Marine Systems Engineering
65
Marine System Engineering
Mission
•
Good balance between
•
•
•
practical engineering
use of fundamental knowledge
Research in strong cooperation with industry
•
•
•
MSC and PhD students in industry
Industry as a "floating" laboratory
Some facilities at NLDA
Marine Systems Engineering
66
Marine Systems Engineering
The way to the future
•
Presently
•
•
•
•
•
Chair Marine Engineering not in 1st financial stream
Associate professor (UHD) not yet appointed
2nd assistant professor will be attracted
Part time full professor to retire in 2013
Alternatives
•
Do nothing.
•
Then ultimately and hopefully the field will be led by an Associate
Professor (UHD) with 2 assistant professors
•
•
Find support to augment the associate professor to full
professor
•
Authority in the field, national and international
•
Independency for PhD supervision
Find part-time (industry based) professor in addition to TU
staff
Marine Systems Engineering
67
5.
Wisdom
Marine Systems Engineering
68
Stellingen
•
Martin van Hees (1997)
•
•
•
Het ontwikkelen van rekenmodellen ten behoeve van
conceptuele ontwerpstudies kan worden teruggebracht tot het
verzamelen en onderhouden van modelfragmenten en hun
eigenschappen. Het samenvoegen tot modellen, traditioneel
een programmeeractiviteit, kan op effectieve wijze worden
gegeneraliseerd, waardoor men zich kan concentreren op de
kwaliteit en geldigheid van de modelfragmenten.
We beschikken over meer kennis dan we weten.
De grote uitdaging van de kennistechnologie is om optimaal
gebruik te maken van de sterke kanten van mens en machine.
Door de mens niet alleen als gebruiker te beschouwen, maar
als uiterst bruikbaar onderdeel van een kennissysteem kunnen
krachtige en flexibele oplossingen worden gerealiseerd
Marine Systems Engineering
69
Stellingen
•
Clemens van Der Nat (1999)
•
•
•
Door ontwerpkennis van de toepassing te scheiden wordt het
mogelijk alternatieve ontwerpoplossingen te exploreren zonder
aanwezige kennis opnieuw te implementeren.
Een ontwerper hoort alleen vertrouwen te hebben in een
antwoord van een ontwerpmodel indien de algorithmen in het
model aan hem bekend zijn (geworden).
Een computerondersteund gereedschap moet zich herhaalbaar
gedragen, een ontwerper niet.
Marine Systems Engineering
70
Stellingen
•
Hugo Grimmelius (2005)
•
•
•
•
Ten einde de juiste richting te behouden is het onderzoeken
van vele zijpaden, zonder daarin te verdwalen, essentieel voor
alle vormen van onderzoek.
Het ontwikkelen van een simulatiemodel kan een doel op zich
zijn
De "missing link" in de technische evolutie is vaak te vinden
tussen wetenschap en vakmanschap.
Deeltijd hoogleraren zijn "geen tijd" hoogleraren.
Marine Systems Engineering
71
Stellingen
•
Paul Schulten (2005)
•
•
•
De uitvoer van een complex model kan niet eenvoudig
gededuceerd worden uit de onafhankelijke analyses van de
diverse deelmodellen. Ook voor complexe systemen en
modellen geldt dus dat het totaal meer is dan de som der
delen.
De onzekerheidsanalyse is bedoeld om de betrouwbaarheid
van een model te bepalen. Minstens zo belangrijk is de
betrouwbaarheid van de onzekerheidsanalyses.
Naast gestructureerde documenten is bij het construeren van
complexe simulatiemodellen de mondelinge communicatie
tussen diverse specialisten van essentieel belang.
Marine Systems Engineering
72
Propositions
•
Paul Schulten (2005)
•
•
•
The results of a complex model cannot easily be deduced from
independent analysis of the various sub-models Therefore also
for complex technical systems and models the whole is more
than the sum of the parts.
Uncertainty analysis is meant to asses the reliability of a
model. Just as important is the reliability of the uncertainty
analysis.
Apart form structured documents oral communication between
various specialists is essential when constructing complex
simulation models.
Marine Systems Engineering
73
Stellingen
•
Geert van Rens (2008)
•
•
Wetenschappers dienen meer tijd te besteden aan het
voorlichten van niet-ingewijden door onwaarheden in hun
vakgebied te ontkrachten en halve waarheden te nuanceren.
Een van de grootste uitdagingen op fundamenteel
wetenschappelijk gebied is om fenomenen op mesoschaal
fundamenteel te beschrijven met theorieen die op moleculaire
schaal of macroscopische schaal gelden.
Marine Systems Engineering
74
Propositions
•
Geert van Rens (2008)
•
•
Scientists should spent more time informing the public in their
field of expertise by proving false statements wrong and
refining partly true statements.
One of the biggest challenges in fundamental science is a
proper description of phenomena on a meso-scale using
theories from micro and/or macro scale.
Marine Systems Engineering
75
Stellingen
•
Arthur Vrijdag (2008)
•
•
•
Simulatieprogramma's moeten beoordeeld worden volgens het
principe "schuldig totdat het tegendeel bewezen is".
Goede, praktisch bruikbare simulatiemodellen moeten worden
ontwikkeld volgens het principe "zo simpel mogelijk, zo
complex als noodzakelijk". Een model waarvan bij de
ontwikkeling de doelen nog niet vast staan kan dus niet goed
zijn.
Het welbewust nemen van risico moet in de wetenschap
aangemoedigd worden: "Als je alles onder controle lijkt te
hebben, ga je gewoon niet hard genoeg" (Mario Andretti,
raceautocoureur).
Marine Systems Engineering
76
Propositions
•
Arthur Vrijdag (2008)
•
•
•
Simulation tools should be judged according to the principle
"guilty unless proven otherwise".
Good, practical lyapplicable simulationmodels should be
developed according to the principle "as simple as possible, as
complex as necessary". A model of which the goals have not
been properly set during the development phase , can thus not
be a good model.
In science the taking of calculated risk should be encouraged:
"If everything seems under control, you're just going not fast
enough" (Mario Andretti, race car driver).
Marine Systems Engineering
77
Stellingen
•
Milinko Godjevac (2009)
•
•
•
Vanwege de complexiteit van de natuur is een multidisciplinaire
aanpak van cruciaal belang in het ontwerp en innovatie.
Bovendien komt dit in hoge mate tegemoet aan de menselijke
nieuwsgierigheid.
Ingenieurs moeten zaken eenvoudig houden om succesvol te
zijn: "Een ontwerper weet dat de perfectie is bereikt niet als er
niet meer is toe te voegen, maar als er niets meer is om weg
te nemen" (Antoine de Saint-Exupery).
Hoewel de wiskunde onvolledig is (Gödel), kunnen alle andere
wetenschappen nog steeds niet zonder haar.
Marine Systems Engineering
78
Propositions
•
Milinko Godjevac (2009)
•
•
•
Due to nature's complexity, a multidisciplinary approach is
crucial for research and innovation. Moreover it fits best to
human curiosity.
Engineers must keep things simple in order to be succesful:
"A designer knows he has achieved perfection not when there
is nothing to add, but when there is nothing left to take away"
(Antoine de Saint-Exupery).
Although mathematics is incomplete (Gödel), all other sciences
still need it.
Marine Systems Engineering
79
Stellingen
•
Bart van Oers (2011)
•
•
•
De essentie van scheepsontwerpen is niet het positioneren van
de systemen zelf, maar het vinden van innovatieve oplossingen
(bijv. nieuwe systemen en voorspellingsmodulen) die een
vernieuwende indelingen mogelijk maken.
Zowel optimalisatie algorithmen als ontwerpers kunnen zoeken
naar geschikte ontwerpen; echter slechts fysica,
voorspellingsvermogen en ontwerpeisen bepalen voor beiden
of ze iets zullen vinden.
"Design" drivers zijn problemen die ontwerpers zelf
veroorzaken.
Marine Systems Engineering
80
Propositions
•
Bart van Oers (2011)
•
•
•
The essence of ship design lies in the creation of innovative
solutions (such as novel systems and prediction tools) that
enable the generation of innovative arrangements, not the
positioning of the systems itself.
Both optimisation algorithms and ship designers can search for
suitable ship designs. However solely the combination of
physics, the ability to predict and the design requirements
determines for both whether such a search yield results.
"Design" drivers are problems of the naval architect's own
making.
Marine Systems Engineering
81
Stellingen
•
Ding Yu (2011)
•
•
Telkens wanneer metingen en berekeningen worden
gecorreleerd moet aan beide getwijfeld worden. Het is niet erg
waarschijnlijk dat beiden juist zijn, maar aannemen dat beide
fout zijn leidt nergens toe. De enige oplossing is één van beide
voor waar aan te nemen en met die aanname de juistheid van
de andere te testen.
Universiteiten moeten zich richten op theoretisch werk, maar
essentiële experimenten zijn steeds nodig om nieuwe ideëen
en benaderingswijzen te verifiëren. Daarom moeten
universiteiten beschikken over test faciliteiten, zowel voor het
onderwijs als voor het valideren van theoretisch onderzoek.
Marine Systems Engineering
82
Propositions
•
Ding Yu (2011)
•
•
At every stage of correlating measurements with calculations
either should be doubted. Assuming both to be correct is not
very plausible. The only way out is to assume one of them
right and with that test the correctness of the other.
Universities should focus on theoretical work, but essential
experiments are still required to verify new ideas or
approaches. Therefore universities should have test facilities,
both for the students education and for validating theoretical
research.
Marine Systems Engineering
83
Propositions
•
Douwe Stapersma
•
•
•
There are two possible aims for simulations
•
A: to get an accurate numerical answer: calculate!
•
B: to get a global insight: comprehend!
For calculating
•
Black box models are fine
•
Sophisticated first principle models tools (CFD, FEM) also.
For comprehending:
•
First principle models!
•
But reality must be simplified. This is often more difficult then
using sophisticated models
Marine Systems Engineering
84
Stellingen
•
Hugo Grimmelius
•
•
Douwe Stapersma
•
•
Elk model is fout.
x=1 is ook een model.
Cees Tromp
•
Ontwikkelen van theorieën is leuk. Meten is ook leuk. Beide
samen is een nachtmerrie.
Marine Systems Engineering
85
Propositions
•
Wolfgang Pauli
•
•
Theodore von Karman
•
•
Science is sometimes right, often wrong or even completely
wrong. Some science is not even wrong. ("Nicht einmal
falsch" )
There is nothing so practical as a good theory.
Sir Robert Hill
•
Whoever is not prepared to produce a lot of waste will never
produce anything useful.
Marine Systems Engineering
86
6.
Discussion
Marine Systems Engineering
87