Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMPLETE BUSINESS STATISTICS 4 4-1 fourth edi tion The Normal Distribution Using Statistics The Normal Probability Distribution The Standard Normal Distribution The Transformation of Normal Random Variables The Inverse Transformation More Complex Problems The Normal Distribution as an Approximation to Other Probability Distributions Using the Computer Summary and Review of Terms Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-2 BUSINESS STATISTICS fourth edi tion 4-1 Introduction As n increases, the binomial distribution approaches a ... n=6 n = 10 Binomial Distribution: n=10, p=.5 Binomial Distribution: n=14, p=.5 0.3 0.3 0.2 0.2 0.2 0.1 P(x) 0.3 P(x) P(x) Binomial Distribution: n=6, p=.5 n = 14 0.1 0.0 0.1 0.0 0 1 2 3 4 5 6 0.0 0 1 x 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 x x Normal Probability Density Function: 0.3 x 2 2 where e 2.7182818... and 314159265 . ... Irwin/McGraw-Hill Aczel f(x) f ( x) 1 0.4 x 2 e 2 2 for Normal Distribution: = 0, = 1 0.2 0.1 0.0 -5 0 5 x © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-3 BUSINESS STATISTICS fourth edi tion 4-2 The Normal Probability Distribution The normal probability density function: 1 e 0.4 x 2 2 2 0.3 for x 2 2 where e 2.7182818... and 314159265 . ... f(x) f ( x) Normal Distribution: = 0, = 1 0.2 0.1 0.0 -5 0 5 x Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-4 fourth edi tion The Normal Probability Distribution • The normal is a family of – Bell-shaped and symmetric distributions. because the – – – distribution is symmetric, one-half (.50 or 50%) lies on either side of the mean. Each is characterized by a different pair of mean, , and variance, . That is: [X~N()]. Each is asymptotic to the horizontal axis. The area under any normal probability density function within k of is the same for any normal distribution, regardless of the mean and variance. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-5 BUSINESS STATISTICS fourth edi tion Normal Probability Distributions All of these are normal probability density functions, though each has a different mean and variance. Normal Distribution: =40, =1 Normal Distribution: =30, =5 0.4 Normal Distribution: =50, =3 0.2 0.2 0.2 f(y) f(x) f(w) 0.3 0.1 0.1 0.1 0.0 0.0 35 40 45 0.0 0 10 20 30 w 40 x W~N(40,1) X~N(30,25) 50 60 35 45 50 55 65 y Y~N(50,9) Normal Distribution: =0, =1 Consider: 0.4 f(z) 0.3 0.2 0.1 0.0 -5 0 z 5 P(39 W 41) P(25 X 35) P(47 Y 53) P(-1 Z 1) The probability in each case is an area under a normal probability density function. Z~N(0,1) Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-6 BUSINESS STATISTICS fourth edi tion 4-3 The Standard Normal Distribution The standard normal random variable, Z, is the normal random variable with mean = 0 and standard deviation = 1: Z~N(0,12). Standard Normal Distribution 0 .4 =1 { f( z) 0 .3 0 .2 0 .1 0 .0 -5 -4 -3 -2 -1 0 1 2 3 4 5 =0 Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-7 BUSINESS STATISTICS fourth edi tion Finding Probabilities of the Standard Normal Distribution: P(0 < Z < 1.56) Standard Normal Probabilities Standard Normal Distribution 0.4 f(z) 0.3 0.2 0.1 { 1.56 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 Z Look in row labeled 1.5 and column labeled .06 to find P(0 z 1.56) = .4406 Irwin/McGraw-Hill 5 z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 0.4192 0.4332 0.4452 0.4554 0.4641 0.4713 0.4772 0.4821 0.4861 0.4893 0.4918 0.4938 0.4953 0.4965 0.4974 0.4981 0.4987 .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 0.4207 0.4345 0.4463 0.4564 0.4649 0.4719 0.4778 0.4826 0.4864 0.4896 0.4920 0.4940 0.4955 0.4966 0.4975 0.4982 0.4987 Aczel .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 0.4222 0.4357 0.4474 0.4573 0.4656 0.4726 0.4783 0.4830 0.4868 0.4898 0.4922 0.4941 0.4956 0.4967 0.4976 0.4982 0.4987 .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 0.4236 0.4370 0.4484 0.4582 0.4664 0.4732 0.4788 0.4834 0.4871 0.4901 0.4925 0.4943 0.4957 0.4968 0.4977 0.4983 0.4988 .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 0.4251 0.4382 0.4495 0.4591 0.4671 0.4738 0.4793 0.4838 0.4875 0.4904 0.4927 0.4945 0.4959 0.4969 0.4977 0.4984 0.4988 .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 0.4265 0.4394 0.4505 0.4599 0.4678 0.4744 0.4798 0.4842 0.4878 0.4906 0.4929 0.4946 0.4960 0.4970 0.4978 0.4984 0.4989 .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 0.4279 0.4406 0.4515 0.4608 0.4686 0.4750 0.4803 0.4846 0.4881 0.4909 0.4931 0.4948 0.4961 0.4971 0.4979 0.4985 0.4989 .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 0.4292 0.4418 0.4525 0.4616 0.4693 0.4756 0.4808 0.4850 0.4884 0.4911 0.4932 0.4949 0.4962 0.4972 0.4979 0.4985 0.4989 .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 0.4306 0.4429 0.4535 0.4625 0.4699 0.4761 0.4812 0.4854 0.4887 0.4913 0.4934 0.4951 0.4963 0.4973 0.4980 0.4986 0.4990 .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4441 0.4545 0.4633 0.4706 0.4767 0.4817 0.4857 0.4890 0.4916 0.4936 0.4952 0.4964 0.4974 0.4981 0.4986 0.4990 © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-8 BUSINESS STATISTICS fourth edi tion Finding Probabilities of the Standard Normal Distribution: P(Z < -2.47) To find P(Z<-2.47): Find table area for 2.47 P(0 < Z < 2.47) = .4932 P(Z < -2.47) = .5 - P(0 < Z < 2.47) = .5 - .4932 = 0.0068 z ... . . . 2.3 ... 2.4 ... 2.5 ... . . . 0.4909 0.4931 0.4948 .06 . . . 0.4911 0.4932 0.4949 .07 . . . 0.4913 0.4934 0.4951 .08 . . . Standard Normal Distribution Area to the left of -2.47 P(Z < -2.47) = .5 - 0.4932 = 0.0068 0.4 Table area for 2.47 P(0 < Z < 2.47) = 0.4932 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-9 BUSINESS STATISTICS fourth edi tion Finding Probabilities of the Standard Normal Distribution: P(1< Z < 2) To find P(1 Z 2): 1. Find table area for 2.00 F(2) = P(Z 2.00) = .5 + .4772 =.9772 2. Find table area for 1.00 F(1) = P(Z 1.00) = .5 + .3413 = .8413 3. P(1 Z 2.00) = P(Z 2.00) - P(Z 1.00) z . . . 0.9 1.0 1.1 . . . 1.9 2.0 2.1 . . . .00 . . . 0.3159 0.3413 0.3643 . . . 0.4713 0.4772 0.4821 . . . ... ... ... ... ... ... ... = .9772 - .8413 = .1359 Standard Normal Distribution 0.4 Area between 1 and 2 P(1 Z 2) = .4772 - .8413 = 0.1359 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-10 BUSINESS STATISTICS fourth edi tion Finding Values of the Standard Normal Random Variable: P(0 < Z < z) = 0.40 To find z such that P(0 Z z) = .40: 1. Find a probability as close as possible to .40 in the table of standard normal probabilities. z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 . . . .00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 . . . .01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 . . . 2. Then determine the value of z from the corresponding row and column. Area to the left of 0 = .50 Also, since P(Z 0) = .50 .03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 . . . .04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 . . . .05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 . . . .06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 . . . .07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 . . . .08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 . . . .09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 . . . Standard Normal Distribution 0.4 P(z 0) = .50 Area = .40 (.3997) 0.3 f(z) P(0 Z 1.28) .40 .02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 . . . 0.2 0.1 0.0 P(Z 1.28) .90 Irwin/McGraw-Hill -5 -4 -3 -2 -1 0 Z Aczel 1 2 3 4 5 Z = 1.28 © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-11 BUSINESS STATISTICS fourth edi tion 99% Interval around the Mean: P(-z.005< Z < z.005) = 0.99 To have .99 in the center of the distribution, there should be (1/2)(1-.99) = (1/2)(.01) = .005 in each tail of the distribution, and (1/2)(.99) = .495 in each half of the .99 interval. That is: P(0 Z z.005) = .495 z . . . 2.4 ... 2.5 ... 2.6 ... . . . .04 . . . 0.4927 0.4945 0.4959 . . . .05 . . . 0.4929 0.4946 0.4960 . . . Look to the table of standard normal probabilities to find that: Area in center left = .495 .06 . . . 0.4931 0.4948 0.4961 . . . .07 . . . 0.4932 0.4949 0.4962 . . . .08 . . . 0.4934 0.4951 0.4963 . . . .09 . . . 0.4936 0.4952 0.4964 . . . Area in center = .99 0.4 z.005 z.005 Area in center right = .495 f(z) 0.3 P(-.2575 Z ) = .99 0.2 Area in right tail = .005 Area in left tail = .005 0.1 0.0 -5 -4 -3 -2 -z.005 -2.575 Irwin/McGraw-Hill Aczel -1 0 Z 1 2 3 4 5 z.005 2.575 © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-12 BUSINESS STATISTICS fourth edi tion 4-4 The Transformation of Normal Random Variables The area within k of the mean is the same for all normal random variables. So an area under any normal distribution is equivalent to an area under the standard normal. In this example: P(40 X P(-1 Z since and The transformation of X to Z: X x Z x Normal Distribution: =50, =10 0.07 0.06 Transformation f(x) (1) Subtraction: (X - x) 0.05 0.04 0.03 =10 { 0.02 Standard Normal Distribution 0.01 0.00 0.4 0 20 30 40 50 60 70 80 90 100 X 0.3 0.2 (2) Division by x) { f(z) 10 1.0 0.1 X x Z x 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Irwin/McGraw-Hill The inverse transformation of Z to X: Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-13 fourth edi tion Using the Normal Transformation Example 4-1 X~N(160,302) Example 4-2 X~N(127,222) P (100 X 180) 100 X 180 P P ( X 150) X 150 P 100 160 180 160 P Z 30 30 P Z 1.045 0.5 0.3520 0.8520 P 2 Z .6667 0.4772 0.2475 0.7247 Irwin/McGraw-Hill 150 127 P Z 22 Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-14 fourth edi tion Using the Normal Transformation Minitab Solutions for Examples 4-1 & 4-2 MTB > cdf 100; SUBC> normal 160,30. Cumulative Distribution Function Normal with mean = 160.000 and standard deviation = 30.0000 MTB > cdf 150; SUBC> normal 127,22. Cumulative Distribution Function Normal with = 127.000 and = 22.0000 x P( X <= x) 100.0000 0.0228 x P( X <= x) 150.0000 0.8521 MTB > cdf 180; SUBC> normal 160,30. Cumulative Distribution Function Normal with mean = 160.000 and standard deviation = 30.0000 x P( X <= x) 180.0000 0.7475 Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-15 BUSINESS STATISTICS fourth edi tion Using the Normal Transformation Example 4-3 Normal Distribution: = 383, = 12 Example 4-3 X~N(383,122) 0.05 P ( 394 X 399) 394 X 399 P f(X) 0.03 0.02 399 383 394 383 P Z 12 12 0.01 Standard Normal Distribution 0.00 340 0.4 390 440 X 0.3 f(z) 0.04 P 0.9166 Z 1.333 0.4088 0.3203 0.0885 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z MTB > cdf 394; SUBC> normal 383,12. MTB > cdf 399; SUBC> normal 383,12. Cumulative Distribution Function Cumulative Distribution Function Normal with mean = 383.000 and standard deviation = 12.0000 Normal with mean = 383.000 and standard deviation = 12.0000 x P( X <= x) 394.0000 0.8203 Irwin/McGraw-Hill x P( X <= x) 399.0000 0.9088 Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-16 fourth edi tion Using the Normal Transformation Excel Solution for Example 4-3 Do the same with X = 394 and subtract the two values to get 0.088447. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-17 fourth edi tion The Transformation of Normal Random Variables The inverse transformation of Z to X: The transformation of X to Z: Z X x X Z x x x The transformation of X to Z, where a and b are numbers:: a P( X a) P Z b P( X b) P Z b a P(a X b) P Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-18 fourth edi tion Normal Probabilities S ta n d a rd N o rm a l D is trib utio n • The probability that a normal • • Irwin/McGraw-Hill Aczel 0.4 0.3 f(z) random variable will be within 1 standard deviation from its mean (on either side) is 0.6826, or approximately 0.68. The probability that a normal random variable will be within 2 standard deviations from its mean is 0.9544, or approximately 0.95. The probability that a normal random variable will be within 3 standard deviation from its mean is 0.9974. 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-19 fourth edi tion 4-5 The Inverse Transformation The area within k of the mean is the same for all normal random variables. To find a probability associated with any interval of values for any normal random variable, all that is needed is to express the interval in terms of numbers of standard deviations from the mean. That is the purpose of the standard normal transformation. If X~N(50,102), 70 50 x 70 P( X 70) P P Z P( Z 2) 10 That is, P(X >70) can be found easily because 70 is 2 standard deviations above the mean of X: 70 = + 2. P(X > 70) is equivalent to P(Z > 2), an area under the standard normal distribution. Normal Distribution: = 124, = 12 Example 4-4 X~N(124,122) P(X > x) = 0.10 and P(Z > 1.28) 0.10 x = + z = 124 + (1.28)(12) = 139.36 0.04 0.03 . . . ... ... ... . . . .07 . . . 0.3790 0.3980 0.4147 . . . Irwin/McGraw-Hill .08 . . . 0.3810 0.3997 0.4162 . . . .09 . . . 0.3830 0.4015 0.4177 . . . f(x) z . . . 1.1 1.2 1.3 . . . 0.02 0.01 0.00 80 130 180 X Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-20 BUSINESS STATISTICS fourth edi tion The Inverse Transformation (2) Example 4-5 X~N(5.7,0.52) P(X > x)=0.01 and P(Z > 2.33) 0.01 x = + z = 5.7 + (2.33)(0.5) = 6.865 z . . . 2.2 2.3 2.4 . . . .02 . . . 0.4868 0.4898 0.4922 . . . . . . ... ... ... . . . .03 . . . 0.4871 0.4901 0.4925 . . . Example 4-6 X~N(2450,4002) P(a<X<b)=0.95 and P(-1.96<Z<1.96)0.95 x = z = 2450 ± (1.96)(400) = 2450 ±784=(1666,3234) P(1666 < X < 3234) = 0.95 .04 . . . 0.4875 0.4904 0.4927 . . . z . . . 1.8 1.9 2.0 . . Normal Distribution: = 5.7 = 0.5 .07 . . . 0.4693 0.4756 0.4808 . . 0.0015 Area = 0.49 0.6 .4750 .4750 0.0010 f(x) 0.5 f(x) .06 . . . 0.4686 0.4750 0.4803 . . Normal Distribution: = 2450 = 400 0.8 0.7 .05 . . . 0.4678 0.4744 0.4798 . . . . . ... ... ... . . 0.4 X.01 = +z = 5.7 + (2.33)(0.5) = 6.865 0.3 0.0005 0.2 .0250 .0250 Area = 0.01 0.1 0.0 0.0000 3.2 4.2 5.2 6.2 7.2 8.2 1000 2000 X -5 -4 -3 -2 -1 0 z Irwin/McGraw-Hill 3000 4000 X 1 2 3 4 5 -5 -4 -3 -2 -1.96 Z.01 = 2.33 Aczel -1 0 Z 1 2 3 4 5 1.96 © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-21 BUSINESS STATISTICS fourth edi tion Finding Values of a Normal Random Variable, Given a Probability Normal Distribution: = 2450, = 400 0.0012 . 0.0010 . 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. 0.0006 . 0.0004 . 0.0002 . 0.0000 1000 2000 3000 4000 X S tand ard Norm al D istrib utio n 0.4 f(z) 0.3 0.2 0.1 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-22 BUSINESS STATISTICS fourth edi tion Finding Values of a Normal Random Variable, Given a Probability Normal Distribution: = 2450, = 400 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X S tand ard Norm al D istrib utio n 0.4 .4750 .4750 0.3 f(z) 2. Shade the area corresponding to the desired probability. 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-23 BUSINESS STATISTICS fourth edi tion Finding Values of a Normal Random Variable, Given a Probability Normal Distribution: = 2450, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. S tand ard Norm al D istrib utio n 0.4 .4750 f(z) z . . . 1.8 1.9 2.0 . . . . . ... ... ... . . .05 . . . 0.4678 0.4744 0.4798 . . Irwin/McGraw-Hill .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 .07 . . . 0.4693 0.4756 0.4808 . . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Z -1.96 Aczel 1.96 © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-24 BUSINESS STATISTICS fourth edi tion Finding Values of a Normal Random Variable, Given a Probability Normal Distribution: = 2450, = 400 3. From the table of the standard normal distribution, find the z value or values. 0.0012 . .4750 0.0010 . .4750 0.0008 . f(x) 1. Draw pictures of the normal distribution in question and of the standard normal distribution. 0.0006 . 0.0004 . 0.0002 . .9500 0.0000 1000 2000 3000 4000 X 2. Shade the area corresponding to the desired probability. 0.4 .4750 . . . ... ... ... . . .05 . . . 0.4678 0.4744 0.4798 . . Irwin/McGraw-Hill .06 . . . 0.4686 0.4750 0.4803 . . .4750 0.3 f(z) z . . . 1.8 1.9 2.0 . . 4. Use the transformation from z to x to get value(s) of the original random variable. S tand ard Norm al D istrib utio n .07 . . . 0.4693 0.4756 0.4808 . . 0.2 0.1 .9500 0.0 -5 -4 -3 -2 -1 0 1 2 Z -1.96 Aczel 3 4 5 x = z = 2450 ± (1.96)(400) = 2450 ±784=(1666,3234) 1.96 © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-25 fourth edi tion Finding Values of a Normal Random Variable, Given a Probability Using EXCEL to help solve Example 4-4. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-26 BUSINESS STATISTICS fourth edi tion Finding Values of a Normal Random Variable, Given a Probability The normal distribution with = 3.5 and = 1.323 is a close approximation to the binomial with n = 7 and p = 0.50. P(x<4.5) = 0.7749 Normal Distribution: = 3.5, = 1.323 Binomial Distribution: n = 7, p = 0.50 0.3 0.3 P( x 4) = 0.7734 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 10 0 1 2 3 X 4 5 6 7 X MTB > cdf 4.5; SUBC> normal 3.5 1.323. Cumulative Distribution Function MTB > cdf 4; SUBC> binomial 7,.5. Cumulative Distribution Function Normal with mean = 3.50000 and standard deviation = 1.32300 Binomial with n = 7 and p = 0.500000 x P( X <= x) 4.00 0.7734 x P( X <= x) 4.5000 0.7751 Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE 4-27 BUSINESS STATISTICS fourth edi tion The Normal Distribution as an Approximation to Other Probability Distributions (2) The normal distribution with = 5.5 and = 1.6583 is a closer approximation to the binomial with n = 11 and p = 0.50. P(x<4.5) = 0.2732 Normal Distribution: = 5.5, = 1.6583 Binomial Distribution: n = 11, p = 0.50 P(x4) = 0.2744 0.3 0.2 f(x) P(x) 0.2 0.1 0.1 0.0 0.0 0 5 0 10 1 2 3 4 6 7 8 9 10 11 X X MTB > cdf 4; SUBC> binomial 11,.5. Cumulative Distribution Function MTB > cdf 4.5; SUBC> normal 5.5 1.6583. Cumulative Distribution Function Binomial with n = 11 and p = 0.500000 Normal with mean = 5.50000 and standard deviation = 1.65830 x P( X <= x) 4.00 0.2744 x P( X <= x) 4.5000 0.2732 Irwin/McGraw-Hill 5 Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-28 fourth edi tion Approximating a Binomial Probability Using the Normal Distribution b np a np P( a X b) P Z np(1 p) np(1 p) for n large (n 50) and p not too close to 0 or 1.00 Or: b 0.5 np a 0.5 np P(a X b) P Z np(1 p) np(1 p) for n moderately large (20 n < 50). If p is either small (close to 0) or large (close to 1), use the Poisson approximation. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-29 fourth edi tion 4-7 Using the Computer • In EXCEL, the command • NORMSDIST(number) will return cumulative probability for a standard normal random variable. The command NORMDIST(number, mean, standard deviation) will return the cumulative probability for a general random variable. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999 COMPLETE BUSINESS STATISTICS 4-30 fourth edi tion 4-7 Using the Computer • For example, NORMSDIST(1.0) = 0.8413. • NORMDIST(10.0, 5, 2) = 0.9938. • The inverse commands are • • NORMSINV(number) and NORMINV(number, mean, standard deviation). NORMSINV(0.975) = 1.96. NORMINV(0.975, 20, 10) = 39.6. Irwin/McGraw-Hill Aczel © The McGraw-Hill Companies, Inc., 1999