Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 180 Chapter 6 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 180 Lecture Notes Section 6.1 Verifying Trigonometric Identities Verify the identity. a. sin x + cos x cot x = csc x b. (tan u + cot u)(cos u + sin u) = csc u + sec u c. 1 + csc 3β − cot 3β = cos 3β sec 3β d. tan2 x 1 − cos x = sec x + 1 cos x Section 6.1 continued on next page. . . 2 Section 6.1 M. Ornelas e. Math 180 Lecture Notes cot θ − tan θ = csc θ − sec θ sin θ + cos θ f. 1 = sin β cos β tan β + cot β b. 2 cos θ + 1 = 0 d. (2 sin θ + 1)(2 cos θ + 3) = 0 Section 6.2 Trigonometric Equations Find all solutions of the equation. √ a. sin x = − 2 2 √ 2 1 c. cos x = − 4 2 Section 6.2 continued on next page. . . 3 Section 6.1 (continued) M. Ornelas Math 180 Lecture Notes Find all solutions of the equation that are in the interval [0, 2π). π =0 a. cos 2x − b. 2 cos2 t + 3 cos t = −1 4 c. 2 cos2 γ + cos γ = 0 d. 4 2 tan t − sec2 t = 0 Section 6.2 (continued) M. Ornelas Math 180 Lecture Notes Section 6.3 The Addition and Subtraction Formulas Cofunction Formulas π 1. cos − u = sin u 2 3. tan 5. sec π 2 π 2 2. sin − u = cot u 4. cot − u = csc u 6. csc π 2 π 2 π 2 − u = cos u − u = tan u − u = sec u Addition and Subtraction Formulas for Cosine, Sine and Tangent 1. cos(u − v) = cos u cos v + sin u sin v 2. cos(u + v) = cos u cos v − sin u sin v 3. sin(u + v) = sin u cos v + cos u sin v 4. sin(u − v) = sin u cos v − cos u sin v 5. tan(u + v) = tan u + tan v 1 − tan u tan v 6. tan(u − v) = tan u − tan v 1 + tan u tan v Express as a cofunction of a complementary angle. a. cos π 3 Section 6.3 continued on next page. . . b. 5 tan 1 Section 6.3 M. Ornelas Math 180 Lecture Notes Find the exact values. a. cos π π + cos 4 6 b. tan 60◦ + tan 225◦ b. sin(−5) cos 2 + cos 5 sin(−2) Express as a trigonometric function of one angle. a. cos 61◦ sin 82◦ − sin 61◦ cos 82◦ If sin α = − π 5 and tan α > 0, find the exact value of sin α − 13 3 Section 6.3 continued on next page. . . 6 Section 6.3 (continued) M. Ornelas Math 180 Lecture Notes If α and β are acute angles such that csc α = a. sin(α + β) b. Section 6.3 (continued) 13 4 and cot β = , find 12 3 tan(α + β) c. the quadrant containing α + β Verify the identity. a. π 1 + tan u = tan u + 4 1 − tan u b. 7 sin(u + v) · sin(u − v) = sin2 u − sin2 v M. Ornelas Math 180 Lecture Notes Section 6.4 Multiple-Angle Formulas Double-Angle Formulas 1. sin 2u = 2 sin u cos u 2. cos 2u = cos2 u − sin2 u 3. cos 2u = 1 − 2 sin2 u 4. tan 2u = If sin α = 2 tan u 1 − tan2 u 4 and α is an acute angle, find the exact values of sin 2α and cos 2α 5 Express cos 3θ in terms of cos θ Section 6.4 continued on next page. . . 8 Section 6.4 M. Ornelas Math 180 Lecture Notes Half-Angle Identities 1. sin2 u = 1 − cos 2u 2 2. cos2 u = 1 + cos 2u 2 3. tan2 u = 1 − cos 2u 1 + cos 2u Verify the identity sin2 x cos2 x = 1 (1 − cos 4x). 8 Express cos4 t in terms of values of the cosine function with exponent 1. Section 6.4 continued on next page. . . 9 Section 6.4 (continued) M. Ornelas Math 180 Lecture Notes Half-Angle Formulas r v 1 − cos v 1. sin = ± 2 2 v 2. cos = ± 2 r 1 + cos v 2 v 3. tan = ± 2 r 1 − cos v 1 + cos v Find exact values for a. sin 22.5◦ b. Half-Angle Formulas for the Tangent 1. tan v 1 − cos v = 2 sin v 2. tan v sin v = 2 1 + cos v α 4 If tan α = − and α is in quadrant IV, find tan . 3 2 10 cos 112.5◦ Section 6.4 (continued) M. Ornelas Math 180 Lecture Notes Section 6.5 Product-to-Sum and Sum-to-Product Formulas Product-to-Sum Formulas 1. sin u cos v = 1 [sin(u + v) + sin(u − v)] 2 2. cos u sin v = 1 [sin(u + v) − sin(u − v)] 2 3. cos u cos v = 1 [cos(u + v) + cos(u − v)] 2 4. sin u sin v = 1 [cos(u − v) − cos(u + v)] 2 Express as a sum or difference. a. b. sin 7t sin t Sum-to-Product Formulas 1. sin a + sin b = 2 sin a+b a−b cos 2 2 2. sin a − sin b = 2 cos a+b a−b sin 2 2 3. cos a + cos b = 2 cos a+b a−b cos 2 2 4. cos a − cos b = −2 sin a+b a−b sin 2 2 Section 6.5 continued on next page. . . 11 3 cos x sin 2x Section 6.5 M. Ornelas Math 180 Lecture Notes Express as a product. a. sin 2θ − sin 8θ b. cos x + cos 2x b. 1 sin u − sin v tan 2 (u − v) = sin u + sin v tan 12 (u + v) Verify the identity. a. sin 4t + sin 6t = cot t cos 4t − cos 6t Use sum-to-product formulas to find the solutions of the equation. a. sin 5t + sin 3t = 0 b. 12 cos 3x = − cos 6x Section 6.5 (continued) M. Ornelas Math 180 Lecture Notes Section 6.6 The Inverse Trigonometric Functions Definition of the Inverse Sine Function The inverse sine function, denoted by sin−1 , is defined by y = sin−1 x if and only if x = sin y for −1 ≤ x ≤ 1 and − π π ≤y≤ . 2 2 Definition of the Inverse Cosine Function The inverse cosine function, denoted by cos−1 , is defined by y = cos−1 x if and only if x = cos y for −1 ≤ x ≤ 1 and 0 ≤ y ≤ π. Definition of the Inverse Tangent Function The inverse tangent function, denoted by tan−1 , is defined by y = tan−1 x if and only if x = tan y for any real number x and for − π π <y< . 2 2 Find the exact value of the expression whenever it is defined. −1 √ 2 2 a. sin c. √ tan−1 − 3 Section 6.6 continued on next page. . . π 2 b. cos−1 d. arccos 13 π 3 Section 6.6 M. Ornelas Math 180 Lecture Notes !# " 3 e. sin arcsin − 10 7π g. arctan tan 4 −1 Section 6.6 (continued) !# " 5π cos 6 f. cos h. tan cos−1 0 ! " ! # 3 4 i. cos arctan − − arcsin 4 5 j. Section 6.6 continued on next page. . . 14 −1 tan 2 tan 3 4 ! M. Ornelas Math 180 Lecture Notes Section 6.6 (continued) Write the expression as an algebraic expression in x for x > 0. a. sin tan−1 x b. x csc tan−1 2 Use inverse trigonometric functions to find the solutions of the equation cos2 x + 2 cos x − 1 = 0 that are in the interval [0, 2π). 15