Download TaqMan MicroRNA Assays Publication List

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
TaqMan® MicroRNA Assays Publication List
Click on the product(s) below to find a current list of citations:
•
•
•
•
TaqMan® MicroRNA Assays Human Early Access Panel
Individual TaqMan® MicroRNA Assays
TaqMan® Array Human MicroRNA Panel v1.0 (Early Access) and/or Multiplex™ RT
Primer Pools
TaqMan® Array Human & Rodent Cards and/or Megaplex™ Primer Pools
TaqMan® MicroRNA Assays Human Early Access Panel
1.
Barroso-delJesus, A., et al.. Embryonic stem cell-specific miR302-367 cluster:
human gene structure and functional characterization of its core promoter. Mol
Cell Biol, 2008. 28(21): p. 6609–19.
2.
Cahill, S., et al. Effect of BRAFV600E mutation on transcription and posttranscriptional regulation in a papillary thyroid carcinoma model. Mol Cancer,
2007. 6: p. 21.
3.
Cahill, S., et al. Effect of ret/PTC 1 rearrangement on transcription and posttranscriptional regulation in a papillary thyroid carcinoma model. Mol Cancer,
2006. 5: p. 70.
4.
Chen, L., et al. The role of microRNA expression pattern in human intrahepatic
cholangiocarcinoma. J Hepatol, 2009. 50(2): p. 358–69.
5.
Dogini, D.B., et al. MicroRNA expression profile in murine central nervous
system development. J Mol Neurosci, 2008. 35(3): p. 331–7.
6.
Giannakakis, A., et al. miR-210 links hypoxia with cell cycle regulation and is
deleted in human epithelial ovarian cancer. Cancer Biol Ther, 2008. 7(2): p. 255–
64.
7.
Gibcus, J.H., et al. Hodgkin lymphoma cell lines are characterized by a specific
miRNA expression profile. Neoplasia, 2009. 11(2): p. 167–76.
8.
Guglielmelli, P., et al. MicroRNA expression profile in granulocytes from
primary myelofibrosis patients. Exp Hematol, 2007. 35(11): p. 1708–18.
9.
Kloting, N., et al. MicroRNA expression in human omental and subcutaneous
adipose tissue. PLoS ONE, 2009. 4(3): p. e4699.
10.
Laios, A., et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer.
Mol Cancer, 2008. 7: p. 35.
11.
Lee, J.W., et al. Altered MicroRNA expression in cervical carcinomas. Clin
Cancer Res, 2008. 14(9): p. 2535–42.
12.
Mees, S.T., et al. Involvement of CD40 targeting miR-224 and miR-486 on the
progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol, 2009. 16(8):
p. 2339–50.
13.
Moschos, S.A., et al. Expression profiling in vivo demonstrates rapid changes in
lung microRNA levels following lipopolysaccharide-induced inflammation but
not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007. 8: p.
240.
14.
15.
16.
17.
18.
Nikiforova, M.N., et al. MicroRNA expression profiling of thyroid tumors:
biological significance and diagnostic utility. J Clin Endocrinol Metab, 2008.
93(5): p. 1600–8.
Perry, M.M., et al. Rapid changes in microRNA-146a expression negatively
regulate the IL-1beta-induced inflammatory response in human lung alveolar
epithelial cells. J Immunol, 2008. 180(8): p. 5689–98.
Si, M.L., et al. miR-21-mediated tumor growth. Oncogene, 2007. 26(19): p.
2799–803.
Silber, J., et al. miR-124 and miR-137 inhibit proliferation of glioblastoma
multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,
2008. 6: p. 14.
Sun, M., et al. Curcumin (diferuloylmethane) alters the expression profiles of
microRNAs in human pancreatic cancer cells. Mol Cancer Ther, 2008. 7(3): p.
464–73.
Individual TaqMan® MicroRNA Assays
1.
Barroso-delJesus, A., et al. Embryonic stem cell-specific miR302-367 cluster:
human gene structure and functional characterization of its core promoter. Mol
Cell Biol, 2008. 28(21): p. 6609–19.
2.
Cahill, S., et al. Effect of BRAFV600E mutation on transcription and posttranscriptional regulation in a papillary thyroid carcinoma model. Mol Cancer,
2007. 6: p. 21.
3.
Cahill, S., et al. Effect of ret/PTC 1 rearrangement on transcription and posttranscriptional regulation in a papillary thyroid carcinoma model. Mol Cancer,
2006. 5: p. 70.
4.
Chen, L., et al. The role of microRNA expression pattern in human intrahepatic
cholangiocarcinoma. J Hepatol, 2009. 50(2): p. 358–69.
5.
Dogini, D.B., et al. MicroRNA expression profile in murine central nervous
system development. J Mol Neurosci, 2008. 35(3): p. 331–7.
6.
Giannakakis, A., et al. miR-210 links hypoxia with cell cycle regulation and is
deleted in human epithelial ovarian cancer. Cancer Biol Ther, 2008. 7(2): p. 255–
64.
7.
Gibcus, J.H., et al. Hodgkin lymphoma cell lines are characterized by a specific
miRNA expression profile. Neoplasia, 2009. 11(2): p. 167–76.
8.
Guglielmelli, P., et al. MicroRNA expression profile in granulocytes from
primary myelofibrosis patients. Exp Hematol, 2007. 35(11): p. 1708–18.
9.
Kloting, N., et al. MicroRNA expression in human omental and subcutaneous
adipose tissue. PLoS ONE, 2009. 4(3): p. e4699.
10.
Laios, A., et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer.
Mol Cancer, 2008. 7: p. 35.
11.
Lee, J.W., et al. Altered MicroRNA expression in cervical carcinomas. Clin
Cancer Res, 2008. 14(9): p. 2535–42.
12.
Mees, S.T., et al. Involvement of CD40 targeting miR-224 and miR-486 on the
progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol, 2009. 16(8):
p. 2339–50.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Moschos, S.A., et al. Expression profiling in vivo demonstrates rapid changes in
lung microRNA levels following lipopolysaccharide-induced inflammation but
not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007. 8: p.
240.
Nikiforova, M.N., et al. MicroRNA expression profiling of thyroid tumors:
biological significance and diagnostic utility. J Clin Endocrinol Metab, 2008.
93(5): p. 1600–8.
Perry, M.M., et al. Rapid changes in microRNA-146a expression negatively
regulate the IL-1beta-induced inflammatory response in human lung alveolar
epithelial cells. J Immunol, 2008. 180(8): p. 5689–98.
Si, M.L., et al. miR-21-mediated tumor growth. Oncogene, 2007. 26(19): p.
2799–803.
Silber, J., et al. miR-124 and miR-137 inhibit proliferation of glioblastoma
multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,
2008. 6: p. 14.
Sun, M., et al. Curcumin (diferuloylmethane) alters the expression profiles of
microRNAs in human pancreatic cancer cells. Mol Cancer Ther, 2008. 7(3): p.
464–73.
Ach, R.A., H. Wang, and B. Curry, Measuring microRNAs: comparisons of
microarray and quantitative PCR measurements, and of different total RNA prep
methods. BMC Biotechnol, 2008. 8: p. 69.
Avissar, M., et al. MicroRNA expression ratio is predictive of head and neck
squamous cell carcinoma. Clin Cancer Res, 2009. 15(8): p. 2850–5.
Bandres, E., et al. microRNA-451 regulates macrophage migration inhibitory
factor production and proliferation of gastrointestinal cancer cells. Clin Cancer
Res, 2009. 15(7): p. 2281–90.
Bandres, E., et al. Identification by Real-time PCR of 13 mature microRNAs
differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,
2006. 5: p. 29.
Beuvink, I., et al. A novel microarray approach reveals new tissue-specific
signatures of known and predicted mammalian microRNAs. Nucleic Acids Res,
2007. 35(7): p. e52.
Bhaskaran, M., et al. MicroRNA-127 modulates fetal lung development. Physiol
Genomics, 2009. 37(3): p. 268–78.
Bruchova, H., M. Merkerova, and J.T. Prchal, Aberrant expression of microRNA
in polycythemia vera. Haematologica, 2008. 93(7): p. 1009–16.
Castellano, L., et al. The estrogen receptor-{alpha}-induced microRNA signature
regulates itself and its transcriptional response. Proc Natl Acad Sci U S A, 2009.
Chambers, C. and B. Shuai, Profiling microRNA expression in Arabidopsis pollen
using microRNA array and real-time PCR. BMC Plant Biol, 2009. 9: p. 87.
Chen, C., et al. Real-time quantification of microRNAs by stem-loop RT-PCR.
Nucleic Acids Res, 2005. 33(20): p. e179.
Chen, J., et al. Highly sensitive and specific microRNA expression profiling using
BeadArray technology. Nucleic Acids Res, 2008. 36(14): p. e87.
Chen, S.Y., et al. The genomic analysis of erythrocyte microRNA expression in
sickle cell diseases. PLoS ONE, 2008. 3(6): p. e2360.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
Chen, T., et al. MicroRNA-125a-5p partly regulates the inflammatory response,
lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages.
Cardiovasc Res, 2009. 83(1): p. 131–9.
Childs, G., et al. Low-level expression of microRNAs let-7d and miR-205 are
prognostic markers of head and neck squamous cell carcinoma. Am J Pathol,
2009. 174(3): p. 736–45.
Chim, S.S., et al. Detection and characterization of placental microRNAs in
maternal plasma. Clin Chem, 2008. 54(3): p. 482–90.
Cogswell, J.P., et al. Identification of miRNA changes in Alzheimer's disease
brain and CSF yields putative biomarkers and insights into disease pathways. J
Alzheimers Dis, 2008. 14(1): p. 27–41.
Datta, J., et al. Methylation mediated silencing of MicroRNA-1 gene and its role
in hepatocellular carcinogenesis. Cancer Res, 2008. 68(13): p. 5049–58.
Davis, B.N., et al. SMAD proteins control DROSHA-mediated microRNA
maturation. Nature, 2008. 454(7200): p. 56–61.
Foekens, J.A., et al. Four miRNAs associated with aggressiveness of lymph nodenegative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S
A, 2008. 105(35): p. 13021–6.
Fredriksson, K., et al. Dysregulation of mitochondrial dynamics and the muscle
transcriptome in ICU patients suffering from sepsis induced multiple organ failure.
PLoS ONE, 2008. 3(11): p. e3686.
Gabriely, G., et al. MicroRNA 21 promotes glioma invasion by targeting matrix
metalloproteinase regulators. Mol Cell Biol, 2008. 28(17): p. 5369–80.
Granjon, A., et al. The microRNA signature in response to insulin reveals their
implication in the transcriptional action of insulin in human skeletal muscle and
the role of a SREBP-1c/MEF2C pathway. Diabetes, 2009.
Hiyoshi, Y., et al. MicroRNA-21 regulates the proliferation and invasion in
esophageal squamous cell carcinoma. Clin Cancer Res, 2009. 15(6): p. 1915–22.
Hui, A.B., et al. Robust global micro-RNA profiling with formalin-fixed paraffinembedded breast cancer tissues. Lab Invest, 2009. 89(5): p. 597–606.
Ivey, K.N., et al. MicroRNA regulation of cell lineages in mouse and human
embryonic stem cells. Cell Stem Cell, 2008. 2(3): p. 219–29.
Jazdzewski, K., et al. Polymorphic mature microRNAs from passenger strand of
pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A, 2009.
106(5): p. 1502–5.
Jung, M., et al. MicroRNA profiling of clear cell renal cell cancer identifies a
robust signature to define renal malignancy. J Cell Mol Med, 2009.
Kikuchi, K., et al. Transcripts of unknown function in multiple-signaling
pathways involved in human stem cell differentiation. Nucleic Acids Res, 2009.
37(15): p. 4987–5000.
Kim, G.H., et al. Translational control of FOG-2 expression in cardiomyocytes by
microRNA-130a. PLoS ONE, 2009. 4(7): p. e6161.
Kuchenbauer, F., et al. In-depth characterization of the microRNA transcriptome
in a leukemia progression model. Genome Res, 2008. 18(11): p. 1787–97.
Kulshreshtha, R., et al. A microRNA signature of hypoxia. Mol Cell Biol, 2007.
27(5): p. 1859–67.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
Lee, E.J., et al. Expression profiling identifies microRNA signature in pancreatic
cancer. Int J Cancer, 2007. 120(5): p. 1046–54.
Liu, W.H., et al. MicroRNA-18a prevents estrogen receptor-alpha expression,
promoting proliferation of hepatocellular carcinoma cells. Gastroenterology, 2009.
136(2): p. 683–93.
Loscher, C.J., et al. Altered retinal microRNA expression profile in a mouse
model of retinitis pigmentosa. Genome Biol, 2007. 8(11): p. R248.
Magrelli, A., et al. Altered microRNA Expression Patterns in Hepatoblastoma
Patients. Transl Oncol, 2009. 2(3): p. 157–63.
Martinez, N.J., et al. A C. elegans genome-scale microRNA network contains
composite feedback motifs with high flux capacity. Genes Dev, 2008. 22(18): p.
2535–49.
Mattie, M.D., et al. Optimized high-throughput microRNA expression profiling
provides novel biomarker assessment of clinical prostate and breast cancer
biopsies. Mol Cancer, 2006. 5: p. 24.
Mees, S.T., et al. EP300 - a miRNA-regulated metastasis suppressor gene in
ductal adenocarcinomas of the pancreas. Int J Cancer, 2009.
Michael, A., et al. Exosomes from human saliva as a source of microRNA
biomarkers. Oral Dis, 2009.
Mitchell, P.S., et al. Circulating microRNAs as stable blood-based markers for
cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513–8.
Nie, K., et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in
Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin
lymphomas. Am J Pathol, 2008. 173(1): p. 242–52.
O'Hara, A.J., W. Vahrson, and D.P. Dittmer. Gene alteration and precursor and
mature microRNA transcription changes contribute to the miRNA signature of
primary effusion lymphoma. Blood, 2008. 111(4): p. 2347–53.
Ohta, M., et al. Clinical significance of the reduced expression of G protein
gamma 7 (GNG7) in oesophageal cancer. Br J Cancer, 2008. 98(2): p. 410–7.
Peltier, H.J. and G.J. Latham. Normalization of microRNA expression levels in
quantitative RT-PCR assays: identification of suitable reference RNA targets in
normal and cancerous human solid tissues. RNA, 2008. 14(5): p. 844–52.
Pradervand, S., et al. Impact of normalization on miRNA microarray expression
profiling. RNA, 2009. 15(3): p. 493–501.
Prueitt, R.L., et al. Expression of microRNAs and protein-coding genes associated
with perineural invasion in prostate cancer. Prostate, 2008. 68(11): p. 1152–64.
Qian, B., et al. High miR-21 expression in breast cancer associated with poor
disease-free survival in early stage disease and high TGF-beta1. Breast Cancer
Res Treat, 2009. 117(1): p. 131–40.
Ren, J., et al. MicroRNA and gene expression patterns in the differentiation of
human embryonic stem cells. J Transl Med, 2009. 7: p. 20.
Sarkar, D., et al. Quality assessment and data analysis for microRNA expression
arrays. Nucleic Acids Res, 2009. 37(2): p. e17.
Sato, F., et al. Intra-platform repeatability and inter-platform comparability of
microRNA microarray technology. PLoS ONE, 2009. 4(5): p. e5540.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
Schafer, A., et al. Diagnostic and prognostic implications of microRNA profiling
in prostate carcinoma. Int J Cancer, 2009.
Schetter, A.J., et al. MicroRNA expression profiles associated with prognosis and
therapeutic outcome in colon adenocarcinoma. JAMA, 2008. 299(4): p. 425–36.
Shell, S., et al. Let-7 expression defines two differentiation stages of cancer. Proc
Natl Acad Sci U S A, 2007. 104(27): p. 11400–5.
Slezak, S., et al. Gene and microRNA analysis of neutrophils from patients with
polycythemia vera and essential thrombocytosis: down-regulation of micro RNA1 and -133a. J Transl Med, 2009. 7: p. 39.
Stanczyk, J., et al. Altered expression of MicroRNA in synovial fibroblasts and
synovial tissue in rheumatoid arthritis. Arthritis Rheum, 2008. 58(4): p. 1001–9.
Szafranska, A.E., et al. Accurate molecular characterization of formalin-fixed,
paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn,
2008. 10(5): p. 415–23.
Takahashi, Y., et al. MiR-107 and MiR-185 can induce cell cycle arrest in human
non small cell lung cancer cell lines. PLoS ONE, 2009. 4(8): p. e6677.
Tang, X., et al. Identification of glucose-regulated miRNAs from pancreatic
{beta} cells reveals a role for miR-30d in insulin transcription. RNA, 2009. 15(2):
p. 287–93.
Tang, Y., et al. Effect of alcohol on miR-212 expression in intestinal epithelial
cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res, 2008.
32(2): p. 355–64.
Tang, Y., et al. MicroRNA-146A contributes to abnormal activation of the type I
interferon pathway in human lupus by targeting the key signaling proteins.
Arthritis Rheum, 2009. 60(4): p. 1065–75.
Tian, Z., et al. MicroRNA-target pairs in the rat kidney identified by microRNA
microarray, proteomic, and bioinformatic analysis. Genome Res, 2008. 18(3): p.
404–11.
Tzur, G., et al. MicroRNA expression patterns and function in endodermal
differentiation of human embryonic stem cells. PLoS ONE, 2008. 3(11): p. e3726.
Wang, J., et al. MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma
Patients as Novel Blood-Based Biomarkers of Disease. Cancer Prev Res (Phila
Pa), 2009.
Wang, L., et al. Genome-wide transcriptional profiling reveals microRNAcorrelated genes and biological processes in human lymphoblastoid cell lines.
PLoS ONE, 2009. 4(6): p. e5878.
Wayman, G.A., et al. An activity-regulated microRNA controls dendritic
plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A, 2008.
105(26): p. 9093–8.
Wong, T.S., et al. Identification of pyruvate kinase type M2 as potential
oncoprotein in squamous cell carcinoma of tongue through microRNA profiling.
Int J Cancer, 2008. 123(2): p. 251–7.
Wyman, S.K., et al. Repertoire of microRNAs in epithelial ovarian cancer as
determined by next generation sequencing of small RNA cDNA libraries. PLoS
ONE, 2009. 4(4): p. e5311.
86.
87.
88.
Xi, Y., et al. Systematic analysis of microRNA expression of RNA extracted from
fresh frozen and formalin-fixed paraffin-embedded samples. RNA, 2007. 13(10): p.
1668–74.
Zhan, M., et al. MicroRNA expression dynamics during murine and human
erythroid differentiation. Exp Hematol, 2007. 35(7): p. 1015–25.
Zhang, L., et al. Genomic and epigenetic alterations deregulate microRNA
expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A, 2008.
105(19): p. 7004–9.
TaqMan® Array Human MicroRNA Panel v1.0 (Early Access) and/or Multiplex™
RT Primer Pools
1.
Granjon, A., et al. The microRNA signature in response to insulin reveals their
implication in the transcriptional action of insulin in human skeletal muscle and
the role of a SREBP-1c/MEF2C pathway. Diabetes, 2009.
2.
Hui, A.B., et al. Robust global micro-RNA profiling with formalin-fixed paraffinembedded breast cancer tissues. Lab Invest, 2009. 89(5): p. 597–606.
3.
Lau, P., et al. Identification of dynamically regulated microRNA and mRNA
networks in developing oligodendrocytes. J Neurosci, 2008. 28(45): p. 11720–30.
4.
Mees, S.T., et al. Involvement of CD40 targeting miR-224 and miR-486 on the
progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol, 2009. 16(8):
p. 2339–50.
5.
Mees, S.T., et al. EP300 - a miRNA-regulated metastasis suppressor gene in
ductal adenocarcinomas of the pancreas. Int J Cancer, 2009.
6.
Mitchell, P.S., et al. Circulating microRNAs as stable blood-based markers for
cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513–8.
7.
Otaegui, D., et al. Differential micro RNA expression in PBMC from multiple
sclerosis patients. PLoS ONE, 2009. 4(7): p. e6309.
8.
Resnick, K.E., et al. The detection of differentially expressed microRNAs from
the serum of ovarian cancer patients using a novel real-time PCR platform.
Gynecol Oncol, 2009. 112(1): p. 55–9.
9.
Si, M.L., et al. miR-21-mediated tumor growth. Oncogene, 2007. 26(19): p.
2799–803.
10.
Wang, L., et al. Genome-wide transcriptional profiling reveals microRNAcorrelated genes and biological processes in human lymphoblastoid cell lines.
PLoS ONE, 2009. 4(6): p. e5878.
TaqMan® Array Human & Rodent Cards and/or Megaplex™ Primer Pools
1.
Chen, Y., et al. Reproducibility of Quantitative RT-PCR Array in miRNA
Expression Profiling and Comparison with Microarray Analysis. BMC Genomics,
2009. 10(1): p. 407.
2.
Liu, D.Z., et al. Brain and blood microRNA expression profiling of ischemic
stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab,
2009.
3.
Mestdagh, P., et al. High-throughput stem-loop RT-qPCR miRNA expression
profiling using minute amounts of input RNA. Nucleic Acids Res, 2008. 36(21): p.
e143.
4.
Park, N.J., Hui Zhou, David Elashoff, et al. Salivary microRNA: Discovery,
Characterization, and Clinical Utility for Oral Cancer Detection. Clin Cancer Res,
2009. 15(17): p. 5474–7.
Learn more about all these TaqMan® MicroRNA Assay products at
mirna.appliedbiosystems.com
For Research Use Only. Not for use in diagnostic procedures.
Practice of the patented 5’ Nuclease Process requires a license from Applied Biosystems. The purchase of TaqMan® MicroRNA
Assays includes an immunity from suit under patents specified in the product insert to use only the amount purchased for the
purchaser's own internal research when used with the separate purchase of an Authorized 5’ Nuclease Core Kit. No other patent rights
are conveyed expressly, by implication, or by estoppel. For further information on purchasing licenses contact the Director of
Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.
Trademarks of Life Technologies Corporation and its affiliated companies: AB Logo™, Applied Biosystems®, Megaplex™. TaqMan
is a registered trademark of Roche Molecular Systems, Inc.
© 2009. Life Technologies Corporation. All rights reserved.
09/11/2009
127MI77-01
Related documents