Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Probability theory The department of math of central south university Probability and Statistics Course group §3.4 The distribution of random variable function 1.The sum of random variables 2.The ratio of random variables 3.The extreme value of random variables Of discrete random variables, we have discussed the distribution of random variables function problems. In fact ,the same condition can also be applicated to the continuous variables . For example,if random variable ξis a normal random variable with parameters ( , 2 ) ,in order to obtain the probability of ξeasily ,it is convenient by getting another random variable a Here ηis a function of random variable ξ,and also a random variable 。We now turn to solve the distribution problems of random variable function. Firstly ,a theorem must be introduced. Theorem 3.1 Suppose ξis acontinuous random variable with density function p (x) .Function f(x) is Strictly monotonous,the inverse function h(y) is continuous and differentable,then function f ( ) is also a random variable and the density function is p[h( y ) | h ' ( y ) |], y ( y) 0, others Here min{ f (), f ()} max{ f (), f ()} Proof is omitted Examples,Suppose ξ ~ N ( ,2) , η = a ξ +b, then 1 1 f ( y) f ( y b) |a| a 1 2 | a | η ~ N ( a +b, a22 ) especially ,if ξ ~ N ( , 2) , then X ~ N (0,1) e ( y b a ) 2 2 a 2 2 y The above theorem is restricted to strong conditions that f(x)must be strictly monotonous,and the inverse function h(y) be continuous and differentable,we also know these are difficulty to be satisfied ,So another method is hoped to be producted to get the distribution of random variable function based on the above analysis ,which will be introduced as follows f (x) Here is a question thatξ is a random variable with density function p(x) (or distribution function F(x) ) Find the density function aor distribution of η=g(ξ) The starting point to solve the problem has : (1)The distribution function (2)The density function (1)The distribution function The distribution function Fη(y) must be firstly obtained from the definition of distribution function,that is F y P y Pg y p ( x)dx g ( x ) y Seconly, the density function Fη(y) of η=g(ξ) is obtained in the following through the relation between the density function and the distribution function p y F y . Example 14 Suppose ξis a random variable with density function 2 x, 0 x 1, p ( x) 其它. 0, Please the density function of η =ξ -4 Solution F ( y ) P{ y} P{ 4 y} P{ y 4} F ( y) y4 p ( x)dx. f ( y ) p ( y 4) ( y 4) then 2( y 4) 1, 0 y 4 1, 0, 其它. That is 2 y 8, 4 y 3, f ( y ) 其它. 0, Example 15 Given the density function f ξ(x) of random variable ξ,let a b Here,a and b are constant , a 0, What is the density function fη( y ) of η? Solution F ( y ) P( y ) P(a b y ) When a > 0 , 1 F 1 ( y b) F ( x) P ( y b) a a 1 1 f ( y ) f ( y b) a a When a < 0 , 1 1 1 F ( y b) F ( y ) P ( y b) a a 1 1 f ( y ) f ( y b) a a Then 1 1 f ( y ) f ( y b) |a| a 1.The distribution of Z= ξ+η Suppose (ξ,η)is a two -dimension rndom variable random variables with joint density functin P(x,y), What is the distribution of function Z=ξ+η? FZ ( z ) P{ Z z } p( x, y) d x d y y x y z z y [ x u y z [ p(u y, y) d u] d y z x y z p( x, y) d x] d y [ p(u y, y) d y] d u. O x The density function can be drawn from above analysis pz ( z ) p( z y, y)dy For ξand is symmetrical, When ξis independent of η expressed as follows pZ ( z ) p( x , z x ) d x . pZ (zcan ) be pZ ( z ) p ( z y ) p ( y ) d y , or pZ ( z ) p ( x) p ( z x) d x. Example 16 What is the distribution of Z=ξ+η,here ξandηare given two standared normal random variables? Solution 1 For p ( x) e 2 p ( y ) then 1 e 2 y2 2 x2 2 , x , , y , pZ ( z ) p ( x) p ( z x) d x. 1 pZ ( z ) e 2 1 e 2 z t x 2 1 e 2 z2 4 z2 4 x2 ( z x)2 2 2 e e e z 2 x 2 t 2 dt This means that Z ~ N (0,2). dx dx 1 2 e z2 4 . Explantation Generally,when random variables ξand η are independent ,and ~ N(1 , ), ~ N(2 , ) 2 2 2 1 then, Z ~ N(1 2 , ). 2 1 2 2 The linear combination of finite independent normal random variable is still subject to the normal distribution. Example 17 Supposeξandηare independent random variables,andξ~U(0,1),η~U(0, 1).Let Z = ξ+η, please identify the density function of random variable Z . Solution 1, 0 y 1, 1, 0 x 1, f ( x) f ( y) 0, others, 0, others. By using convolution formula,we have 1 0 f z ( z ) f ( z y ) f ( y )dy f ( z y )dy t z y z z 1 f (t )dt. (1) When z 0 ,then z 1 0 and (2) When 0 z 1 ,then (3) When z 1 0 f Z ( z) 0 z and f Z ( z ) 1 dt z 0 1 2 z 1 z 2 , then 0 z 1 1 and f Z ( z ) z 11 dt . (4) When z 2 ,then z 1 1 and f Z ( z ) .0 Therefore z, f Z ( z ) 2 z , 0, 0 z 1, 1 z 2, z 2 or z 0 . 2.The distribution of the ratio Z= ξ/η Suppose (ξ,η) be a two -dimension rndom variable random variables with joint density functin P(x,y), What is the distribution of function Z=ξ/η? FZ ( z) P{Z z} P{ z} x z y Let u x y , y p( x, y) d x d y p( x, y ) d x d y G2 G1 0 yz O p( x , y) d x d y yz p( x , y) d x d y, 0 x p( x, y) d x d y G1 0 0 z yz p( x, y) d x d y z z 0 yp( yu, y) d u d y 0 yp( yu, y) d y d u by the same reason p( x, y ) d x d y yp( yu, y ) d y d u, G2 therfore FZ ( z ) P{ Z z } p( x, y )dxdy p( x, y) d x d y G1 G2 z 0 0 [ yp ( yu, y) d y yp ( yu, y) d y] d u. Then the peobability density function can be obtained as follows p( z ) 0 yp( yz, y ) d y 0 yp( yz, y ) d y y p( yz, y ) d y. Especially,whenξis independent of η, p( z ) y pX ( yz ) pY ( y) d y. Example 18 Suppose ξand η are The lives of of two different kinds of light bulbs respectivily,when they are independent ,the denstities function are outlined in the following e x , x 0, f ( x) 0, others, 2e 2 y , y 0, g ( y) others 0, What is the density function of Z=ξ/η Solution According to previous analysis 0 0 f Z ( z ) yf ( yz , y ) d y yf ( yz , y ) d y , 2e x e 2 y , x 0, y 0, f ( x, y) 其它. 0, Therefore the density function isas follows . When z0 f Z ( z ) 2 ye e 0 When z0 and yz 2 y d y 2 ye y ( 2 z ) 0 f Z ( z ) 0, 2 2 , z 0, f Z ( z ) (2 z ) 0, z 0. 2 d y ( 2 z )2 , 3.The distribution for extreme value of R.V. Suppose ξand η are two independent random variable,the distributions are F (x) and F ( y ) respectivly. Let M max( , ) N min( , ) Here M and N are called the extrem value of ξand η .Please find the distributions of M,N. According to the definition of distribution function,we can get Fmax ( z ) P{ M z } P{ z, z} P{ z}P{ z} F ( z ) F ( z ). Fmin ( z ) P{ N z } 1 P{ N z } 1 P{ z, z} 1 P{ z} P{ z} 1 [1 P{ z}] [1 P{ z}] then Fmax ( z ) F ( z ) F ( z ), Fmin ( z ) 1 [1 F ( z )][1 F ( z )]. Generally, suppose 1 , 2 ,, n be independent random variable series with distribution functions Fi ( xi ), (i 1,2, , n) Let M max( 1 , 2 ,, n ) N min( 1 , 2 ,, n ) then the distributions of M,N are outlined as follows Fmax ( z ) F1 ( z ) F 2 ( z ) F n ( z ), Fmin ( z ) 1 [1 F1 ( z )][1 F 2 ( z )][1 F n ( z )]. Especially, suppose 1 , 2 ,, n be independent random variable series with same distribution functions F(x),then Fmax ( z ) [ F ( z )]'' , Fmin ( z ) 1 [1 F ( z )]'' . 休息片刻继续