Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
產品生命週期之型態與預測 任 立 中 國立臺灣大學管理學院國際企業學系暨研究所教授 美國俄亥俄州立大學商學院行銷管理博士 1 The Four Stages of The Product Life Cycle Introductory Stage Growth Stage Maturity Stage Time Decline Stage Marketing Strategies and The Product Life Cycle Marketing Mix Strategy Introduction Growth Maturity Decline Product Strategy Limited number of models; frequent product modifications Expanded number of models; frequent product modifications Large number of models Elimination of unprofitable models and brands Distribution Distribution usually limited, depending on product; intensive efforts and high margins often needed to attract wholesalers and retailers Expanded number of dealers; intensive efforts to establish long-term relationships with wholesalers and retailers Extensive number of dealers; margins declining; intensive efforts to retain distributors and shelf space Unprofitable outlets phased out Promotio n strategy Develop product awareness; stimulate primary demand; use intensive personal selling to distributors; use sampling and couponing for consumers Stimulate selective demand; advertise brand aggressively Stimulate selective demand; advertise brand aggressively; promote heavily to retain dealers and customers Phase out all promotion Pricing Strategy Prices are usually high to recover development costs Prices begin to fall toward end of growth stage as result of competitive pressure Prices continue to fall Prices stabilize at relatively low level; small price rises are possible if competition is negligible Strategy Product Life-Cycle Stage Different Product Life Cycles Style Time Fashion Time Fad Time The Importance of New Products 5 個案研討 1996至 2003年67 款各式熨 斗之月銷 售資料 6 7 8 9 10 11 12 13 1400000 1200000 1000000 800000 600000 400000 200000 0 1 13 25 37 49 61 73 85 Cumulative Monthly Sales Volume 1150000 950000 750000 550000 350000 150000 1996 1997 1998 1999 2000 2001 2002 2003 相乘季節性ARIMA(p,d,q)(P,D,Q)s模型 p (B)P (Bs )d sD Xt c q (B)Q (Bs )a t 其中 at~iid N(0, a2 ), c是常數項 p (B) 11B 2 B2 ... p Bp P (Bs ) 1 s Bs 2s B2s ... Ps BPs q (B) 11B 2 B2 ... q Bq Q (B) 1s Bs 2s B2s ... Qs BQs d (1 B)d sD (1 Bs ) D 17 1600000 ARIMA(1,1,1)(1,1,1)12 1 1B1 12 B12 1 B1 B12 X t c 1 1B1 12 B12 a t 1400000 1 - 0.2206B 1 0.3696B12 1 - B 1 - B12 X t 1 - 0.7525B 1 - 0.7593B12 a t 1200000 1000000 800000 600000 400000 200000 0 1996 1997 1998 1999 2000 2001 2002 2003 2004 45000 60 Average sales volume per product 40000 The number of product types sold in that month 50 多項式 (The number of product types sold in that month) 40 35000 30000 25000 30 20000 15000 20 10000 10 5000 0 0 1996 1997 1998 1999 2000 2001 2002 2003 整合型時間數列分析模式之優劣點 優點 考量季節性與長期趨勢之變動 整體預測有助於公司財務之預測與規劃 缺點 缺乏Marketing insights 無助於單一、新產品生命週期之預測 20 Diffusion Model 擴散模型 新產品擴散模型(New Product Diffusion Model) 新技術擴散效應(Diffusion Effect of New Technology) 學習擴散過程(Learning Diffusion Process) 21 Adopters’ Categories Based On Innovativeness 22 Relationship of the Diffusion Process to the Product Life Cycle 23 Product Life Cycle S(t) PLC Consumer Heterogeneity Smaller Consumer Heterogeneity 產品銷售曲線圖 Time24 Characteristics that explain the rate of acceptance and diffusion of new product Complexity Compatibility Relative Advantage Observability Trialability 25 Western Decision Sciences Institute, Thirtieth Annual Meeting The Linkage of Cross-National Product Diffusion Patterns: An Application for Predicting Box-Office Attendance of Motion Pictures (Best Paper Award) Lichung Jen Associate Professor in Marketing Department of International Business National Taiwan University Topic area/track: Marketing Management and Strategies Western Decision Sciences Institute Vancouver, Canada April 3-7, 2001 26 Research Objective To forecast the potential box-office of new motion pictures in Taiwan where sales data is not available 27 INDUSTRY BACKGROUND Sales of fashion goods are very difficult to predict and manage Fashion styles change dramatically from product to product Product Life Cycle is very short Using dynamic pricing strategy to control the length of life Need to predict the whole pattern of PLC, not just a point of sales 28 29 30 Annual Sales Data 200000 150000 100000 50000 0 1995 600000 500000 400000 300000 200000 100000 0 1995 1997 1997 1999 1999 2001 2001 2003 2003 300000 250000 200000 150000 100000 50000 0 1995 20000 2003 0 1995 0 1995 1997 1999 2001 2003 1997 1999 2001 2003 0 1995 1999 2001 2003 1997 1999 2001 2003 1997 1999 2001 2003 1997 1999 2001 2003 100000 50000 1997 1999 2001 2003 0 1995 150000 150000 100000 100000 50000 50000 0 1995 1997 150000 10000 0 1995 0 1995 200000 5000 30000 2001 10000 100000 40000 1999 400000 10000 50000 1997 20000 200000 2003 5000 600000 15000 2001 10000 30000 300000 1999 15000 800000 20000 1997 20000 40000 400000 0 1995 25000 1997 1999 2001 2003 0 1995 31 Annual Sales Data 50000 100000 80000 40000 80000 60000 30000 60000 20000 40000 10000 20000 0 1995 1997 1999 2001 0 1995 2003 40000 20000 1997 1999 2001 2003 0 1995 1999 2001 2003 1997 1999 2001 2003 2003 50000 0 1995 1997 1999 2001 2003 2003 700000 600000 500000 400000 300000 200000 100000 0 1995 1997 1999 2001 2003 500000 50000 250000 400000 40000 200000 300000 30000 150000 200000 20000 100000 100000 10000 50000 0 1995 1997 1999 2001 2003 1999 2001 2003 200000 150000 100000 30000 20000 20000 10000 10000 1997 1997 1999 1999 2001 2001 2003 0 1995 2003 70000 60000 50000 40000 30000 20000 10000 0 1995 0 1995 300000 250000 40000 30000 700000 600000 500000 400000 300000 200000 100000 0 1995 1997 50000 40000 0 1995 0 1995 1997 1997 1997 1999 1999 2001 2001 32 Annual Sales Data 600000 500000 400000 300000 200000 100000 0 1995 1997 1999 2001 2003 400000 800000 300000 600000 200000 400000 100000 200000 0 1995 1997 1999 2001 2003 0 1995 80000 200000 400000 60000 150000 300000 40000 100000 200000 20000 50000 100000 0 1995 300000 250000 200000 150000 100000 50000 0 1995 1997 1999 2001 2003 0 1995 1997 1999 2001 2003 0 1995 1999 2001 2003 1997 1999 2001 2003 1997 1999 2001 2003 2001 2003 1500000 400000 300000 1000000 200000 500000 100000 1997 1999 2001 2003 0 1995 1997 1999 2001 0 1995 2003 80000 1000000 80000 60000 800000 60000 600000 40000 40000 400000 20000 0 1995 1997 20000 200000 1997 1999 2001 2003 0 1995 1997 1999 2001 2003 0 1995 1997 1999 33 Annual Sales Data 200000 400000 150000 300000 100000 200000 50000 100000 0 1995 1997 1999 2001 2003 150000 100000 0 1995 1500000 1000000 500000 1997 1999 2001 800000 100000 600000 80000 0 1995 1997 1999 2001 2003 250000 2003 1200000 1000000 800000 600000 400000 200000 0 1995 2003 600000 500000 400000 300000 200000 100000 0 1995 200000 150000 100000 50000 0 1995 1997 1999 2001 100000 80000 60000 40000 20000 0 1995 1997 1999 2001 1999 2001 2003 1999 2001 2003 40000 200000 0 1995 1997 60000 400000 50000 0 1995 2003 20000 1997 1999 2001 2003 0 1995 1997 20000 15000 10000 5000 1997 1997 1999 1999 2001 2001 2003 0 1995 1997 1999 2001 2003 2003 30000 25000 20000 15000 10000 5000 0 1995 1997 1999 2001 2003 34 Annual Sales Data 20000 1000000 50000 15000 800000 40000 600000 30000 400000 20000 200000 10000 10000 5000 0 1995 1997 1999 2001 2003 0 1995 80000 400000 60000 300000 40000 200000 20000 100000 0 1995 120000 100000 80000 60000 40000 20000 0 1995 1997 1999 2001 2003 0 1995 1997 1999 1999 2001 2001 2003 0 1995 1997 1999 2001 2003 2003 30000 25000 20000 15000 10000 5000 0 1995 1997 1999 2001 2003 2003 300000 250000 200000 150000 100000 50000 0 1995 1997 1999 2001 2003 1997 1999 2001 2003 100000 80000 60000 40000 20000 1997 1999 2001 2003 0 1995 2000000 200000 1500000 150000 1000000 100000 500000 50000 0 1995 1997 1997 1999 2001 2003 0 1995 1997 1999 2001 500000 400000 300000 200000 100000 1997 1999 2001 2003 0 1995 35 Annual Sales Data 600000 500000 400000 300000 200000 100000 0 1995 1997 1999 2001 2003 300000 250000 200000 150000 100000 50000 0 1995 500000 40000 400000 30000 300000 2001 2003 10000 100000 1997 1999 2001 2003 0 1995 1997 1999 2001 2003 60000 50000 40000 30000 20000 10000 0 1995 1997 1999 2001 2003 150000 100000 50000 0 1995 1999 20000 200000 0 1995 1997 1997 1999 2001 2003 1997 1999 2001 2003 500000 400000 300000 200000 100000 0 1995 36 Forecasting Models From Statistical point of view 37 Forecasting Models Model 1: Linear Regression Model X Y e ln Y ln X ln 38 Forecasting Models Model 2: Poisson Regression Model (Grogger and Carson 1991) Pr (Yi i ) Yi i i e Yi ! E Yi i X i 39 Forecasting Models Model 3: Negative Binomial Distribution Model (Ehrenberg 1988;Morrison and Schmittlein 1988) Pr (Yi i ) (i )Yi exp( i ) / Yi ! g ( i , i ) Yi 0,1,2...... 1 ( i ) 1 exp( i ) ( ) i i Pr (Yi , i ) p(Yi i ) g (i , i )di C Yi 1 Yi E (Yi | , i ) i 1 1 ) i i 1 i 1 ( 0, 0, 0 Yi i 1 i 1 1 i V (Yi | , i ) i 1 2 ) i ( i 1) i 1 i 1 ( NBD Regression Model: E (Yi | , i ) i exp( xi ) 40 Forecasting Models Model 4(a): Exponential Decay Model (Krider & Weinberg 1998) Yt 0 e 1( t 1) 2 ( t 1)2 t t 1,2,...... 0 0, 0 0: The sales volume at first time period (week) Decay Rate = 1 e 2t 1 2 2 Forecast Model: Regress 's on X 0 X 0 0 1 X 1 1 2 X 2 2 41 Forecasting Models Model 4(b):Exponential Decay Model with Hierarchical Bayes Estimation Approach Yn X nn n n ~ Multivariate Normal (0, n ) n 2n I 12 0 n Z n un un ~ Multivariate Normal(0, ) 0 2 k The posterior distribution of n | Yn , X n , Z n , , n , ~ Multi var iate Normal{[( X n' n1 X n 1 ) 1 ( X n' n1Yn 1n Z n )], ( X n' n1 X n 1 )} T 1 n2 | Yn , X n , n , v, M ~ Inverse Gamma{v , [ M 1 (Yn X n n ) ' (Yn X n n )]} 2 2 N N N 1 1 1 k | 1k ,..., Nk , Z1,..., Z N , k , 0 , V 0 ~ Multi var iateNormal [(k 2 Z n Z n' V01 )1 (k 2 nk Z n V01 0 ), (k 2 Z n Z n' V01 )1 ] 42 Forecasting Models From Marketing Perspective 43 The Driving Forces of PLC Innovation Rate (創新使用者) -- p Imitation Rate (模仿採用者) -- q Product Diffusion Model 44 Product Diffusion Model d N t q n t p m N t N t m N t dt m 式中的第一項, p[m - N(t)],代表不受之前採 用人數影響的創新採用者,稱p為“創新係數” 式中的第二項, (q/m) N(t)[m - N(t)],代表受 之前採用人數影響的模仿採用者,稱q為"模仿 係數"。 45 Product Diffusion Model p<q p>q Time Time 產品銷售曲線圖 46 Forecasting Models Model 5(a): Bass Diffusion Model by OLS Estimation Method (Bass,1967) q (CumYt i ) 2 m q a pm b q p c m Yt pm (q p )CumYt 1 Let Yt a bCumYt 1 c(CumYt i ) 2 Yt: the total purchasers at time t CumYt-1: the cumulative purchasers at time t-1 m : market potential p : innovation coefficient q : imitation coefficient Forecast Model: Regress p,q,m on X P X p p Q X q q M X m m 47 Forecasting Models Model 5(b): Bass Diffusion Model with Hierarchical Bayes Estimation Approach Yn X nn n n ~ Multivariate Normal (0, n ) n 2n I 12 0 n Z n un un ~ Multivariate Normal(0, ) 0 2 k The posterior distribution of n | Yn , X n , Z n , , n , ~ Multi var iate Normal{[( X n' n1 X n 1 ) 1 ( X n' n1Yn 1n Z n )], ( X n' n1 X n 1 )} T 1 n2 | Yn , X n , n , v, M ~ Inverse Gamma{v , [ M 1 (Yn X n n ) ' (Yn X n n )]} 2 2 N N N 1 1 1 k | 1k ,..., Nk , Z1,..., Z N , k , 0 , V 0 ~ Multi var iateNormal [(k 2 Z n Z n' V01 )1 (k 2 nk Z n V01 0 ), (k 2 Z n Z n' V01 )1 ] 48 Forecasting Models Model 6: Bass Diffusion Model by Nonlinear Least Square Estimation Method(Jain and Rao,1990) F (t ) F (t 1) Yt (m CumYt 1 ) where 1 F (t 1) 1 e ( p q )t F (t ) q 1 e ( p q )t p , Yt: the total purchasers at time t CumYt-1: the cumulative purchasers at time t-1 m : market potential p : innovation coefficient q : imitation coefficient F(t) = the purchase ratio at time tI = error term Forecast Model: Regress p,q,m on X P X p p Q X q q M X m m 49 美國影片在美國擴散型態參數估計值彙總表 序 電影中文片名 號 估計值 p (標準誤) 估計值 q (標準誤) 估計值 m (標準誤) R2 1 是誰搞的鬼 !? 0.30976 (0.006885) 0.74542 (0.027719) 0.11939 (0.04188) 0.742063 (0.045056) 0.372951 (0.0453) 0.154092 (0.019631) 0.001 (0.06828) 0.538471 (0.18287) 0.001 (0.114089) 0.001 (0.11381) 14280004 (35434) 10915541 (38053) 11350362 (298555) 7568655 (54185) 16463913 (340125) 0.99720 2 星艦戰將 3 真假公主娜塔西亞 4 異形 4 - 浴火重生 5 飛天法寶 0.99802 0.66192 0.99574 0.92560 50 美國影片在臺灣擴散型態參數估計值彙總表 序 電影中文片名 號 估計值 p (標準誤) 估計值 q (標準誤) 1 是誰搞的鬼 !? 0.541747 (0.003797) 0.833319 (0.052935) 0.450419 (0.020324) 0.966199 (0.15361) 0.724229 (0.072626) 0.770295 (0.014844) 0.181367 (0.156826) 0.554239 (0.079099) 0.009833 (0.456453) 0.805581 (0.238448) 2 星艦戰將 3 真假公主娜塔西亞 4 異形 4 - 浴火重生 5 飛天法寶 估計值 m 2 R 標準誤 ( ) 106903 (122) 129853 (1314) 60788 (569) 147952 (4790) 94758 (916) 0.99998 0.99885 0.99829 0.99507 0.99902 51 美國影片在臺銷售預測模型: TWp =αp+β1USp+β2USq+β3HR+β4SF+β5 DR+β6 STR+β7 RNK +β8 HDYp +εp TWq =αq+γ1HR+γ2SF+γ3 DR+γ4 STR+γ5 RNK +γ6 HDYq +εq TWm =αm+η1USm+η2HR+η3SF+η4 DR+η5 STR+η6 RNK +η7 HDYm +εm 52 截距項 美國之創新係數 美國之模仿係數 美國之市場潛量 恐怖片 科幻片 非文藝劇情片 票房明星 明星票房價值 假日檔期 臺灣市場擴散預測模型 創新係數 模仿係數 市場潛量 p q m 0.11452 0.566785 5.42551 (1.157) (5.463)*** (1.754)* 0.780212 (4.239)*** 0.378401 (1.895)* 0.8852 (6.634)*** 0.216599 0.35278 3.293445 (1.981)* (1.721)* (0.675) 0.003265 0.43695 10.48246 (0.037) (2.912)*** (2.819)*** 0.0403 0.08145 5.184564 (0.609) (0.675) (1.772)* 0.00301 0.465978 12.2084 (0.014) (1.185) (1.284) 0.000379 0.00752 0.204109 (0.144) (1.551) (1.722)* 0.02728 0.131548 5.834916 (0.529) (1.329) (2.248)** The Measurements of Predictability (1) 1. Mean Absolute Deviation for Total Sales 1 N N Tn Y n 1 nt t 1 Tn Yˆnt t 1 2. Mean Absolute Deviation of Weekly Sales 1 N 1 n 1 Tn N ˆ Ynt Ynt t 1 Tn 3. RMSE(Root Mean Square Error)of Weekly Sales 1 N N n 1 1 Tn Tn (Y t 1 nt Yˆnt ) 2 54 The Measurements of Predictability (2) 4. MAPE(Mean Absolute Percentage Error)of Weekly Sales 1 N 1 n 1 Tn N Ynt Yˆnt 100 % Y t 1 nt Tn 5. Mean Absolute Deviation for First Week Sales 1 N N Y n 1 n1 Yˆn1 6. MAPE(Mean Absolute Percentage Error)for First Week Sales 1 N | Yn1 Yˆn1 | 100% Y n 1 n1 N 55 The Measurements of Predictability (3) 7. Weighted RMSE 1 N N n 1 Tn Ynt 2 ˆ ) T ( Y Y nt nt n t 1 Y nt t 1 8. Weighted MAPE ˆ N Tn Y Y nt nt 1 Ynt 100 % T N n 1 t 1 n Ynt Ynt t 1 56 The Performance of Out Samples Forecasting st MAD(1 week) MAPE(1st week) MAD(Weekly) MAD(Total Sales) RMSE Weighted RMSE MAPE Weighted MAPE Model 1: Model 2: Model 3: Model 4(a): Model 4(b): Model 5(a): Model 5(b): Model 6: Model 1 Model 2 Model 3 Model 4(a) Model 4(b) Model 5(a) Model 5(b) Model 6 38598 30695 33360 23799 17660 9947 9006 6044 47% 52% 39% 40% 33% 14% 16% 12% 14114 101625 20060 30537 115% 51% 11306 76400 15730 23308 120% 54% 14344 100476 18772 26567 218% 55% 9831 70506 13879 20798 46% 39% 8296 58737 12051 18376 40% 36% 5056 36054 7239 11047 61% 21% 5958 41766 8221 11844 79% 26% 4431 31517 5890 7850 32% 19% Linear Regression Model Poisson Regression Model Negative Binomial Distribution Model Exponential Decay Model Exponential Decay Model with Hierarchical Bayes Estimation Approach Bass Diffusion Model by OLS Estimation Method Bass Diffusion Model with Hierarchical Bayes Estimation Approach Bass Diffusion Model by Nonlinear Least Square Estimation Method Forecasting Results: Weekly Box-Office Attendance 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 Soldier Actual 第1週 第2週 第3週 第4週 第5週 第6週 Prediction 第7週 Forecasting Results: Weekly Box-Office Attendance 110,000 The Siege 100,000 90,000 80,000 70,000 Actual Prediction 60,000 50,000 40,000 30,000 20,000 10,000 0 第1週 第2週 第3週 第4週 第5週 第6週 第7週 Forecasting Results: Weekly Box-Office Attendance 90,000 Meet Joe Black 80,000 70,000 60,000 Actual 50,000 Prediction 40,000 30,000 20,000 10,000 0 第1週 第2週 第3週 第4週 第5週 第6週 Forecasting Results: Weekly Box-Office Attendance I Still Know What You Did Last Summer 30,000 25,000 20,000 Actual Prediction 15,000 10,000 5,000 0 第1週 第2週 第3週 第4週 Forecasting Results: Weekly Box-Office Attendance A Bug's Life 120,000 110,000 100,000 90,000 80,000 Actual 70,000 Prediction 60,000 50,000 40,000 30,000 20,000 10,000 0 第1週 第2週 第3週 第4週 第5週 第6週 第7週 第8週 Forecasting Results: Weekly Box-Office Attendance 110,000 Soldier 100,000 The Siege Meet Joe Black 90,000 I Still Know What You Did Last Summer 80,000 A Bug’s Life 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 第1週 第2週 第3週 第4週 第5週 第6週 第7週 第8週 Concluding Remarks Individual (two-stage) models outperform aggregate models. The information from leading market is crucial. Hierarchical Bayes model is better (but no so significant). The Lesson: A forecasting model based on the theory has superior predictability The Key: Finding appropriate product attributes as predictive variables The Inspiration: Codified Knowledge Management 64 臺灣市場擴散預測模型 創新係數- 模仿係數- 市場潛量p q m 截距項 0.11452 0.566785 (1.157) (5.463)*** 美國之創新係數 0.780212 (4.239)*** 美國之模仿係數 0.378401 (1.895)* 美國之市場潛量 恐怖片 Coding 科幻片 非文藝劇情片 票房明星 明星票房價值 假日檔期 -5.42551 (-1.754)* 0.8852 (6.634)*** 0.216599 -0.35278 3.293445 (1.981)* (-1.721)* (0.675) 0.003265 -0.43695 10.48246 (0.037) (-2.912)*** (2.819)*** 0.0403 -0.08145 5.184564 (0.609) (-0.675) (1.772)* -0.00301 0.465978 -12.2084 (-0.014) (1.185) (-1.284) 0.000379 -0.00752 0.204109 (0.144) (-1.551) (1.722)* 0.02728 0.131548 5.834916 (0.529) (1.329) (2.248)** 這 些 係 數 隨 著 時 間 新 資 料 的 加 入 而 不 斷 的 更 新 天底下沒有白吃的午餐 簡易的公式只能說明簡單的世界,複雜 的現象則需藉助深層的模式才得以彰顯。 你們覺得行銷世界是 「簡單」還是「複雜」? 66 指導與建議 67