Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry Proof Study Guide eName: ____________________________________________ Date: _______________ Block: _________ SHOW ALL WORK. Use another piece of paper as needed. 1. Give an example of each of the following properties. a. Reflexive Theorem of Angle Congruence b. Symmetric Theorem of Angle Congruence c. Transitive Theorem of Angle Congruence 2. Use the diagram to determine if the statement is true or false. a) b) c) d) e) f) g) h) 3. AD lies in plane N. KD intersects plane N at point K. AD AJ IJL and LJK are a linear pair. HJA and LJH are supplementary. HJA and LJH are complementary. Plane M and plane O intersect at line r. Line p and line q are parallel. AGD is a right angle and AB , CD , and EF intersect at point G. a) m CGB = ? b) If m FGC = 136o, then m EGA = ? c) If m CGF = 138o, then m EGD = ? d) If m EGA = 73o, then m FGD = ? 4. Solve the equation, writing a reason for each step: 13(2x – 3) – 20x = 3 Statements Reasons 1) 13(2x – 3) – 20x = 3 1) Original equation 2) 26x – 39 – 20x = 3 2)______________________ 3) 6x – 39 = 3 3)______________________ 4) 6x = 42 4)______________________ 5) x = 7 5)______________________ Geometry Proof Study Guide 5. 6. Page 2 Complete the proof: Given: Point K is in the interior of LMN. LMN is a right angle. Prove: LMK and KMN are complementary. Statements Reasons 1) _________________________ 1)Given 2) _________________________ 2)Definition of a right angle 3) _________________________ 3) Given 4) _________________________ 4)Angle addition postulate 5) _________________________ 5) Substitution property of equality 6) _________________________ 6) Definition of complementary angles. Complete the proof: Given: 1 and 2 form a linear pair; m 2 + m 3 + m 4 = 180o Prove: m 1 = m 3 + m 4 Statements Reasons 1) 1 and 2 form a linear pair; 2 + 3 + 4 = 180o 1)________________________ 2) 1 and 2 are supplementary 2)________________________ 3) m 1 + m 2 = 180o 3)________________________ 4) m 1 + m 2 = m 2 + m 3 + m 4 4)________________________ 5) m 1 = m 3 + m 4 5)________________________ Geometry Proof Study Guide 7. Page 3 Complete the proof: Given: SU LR ; TU LN Prove: ST NR Statements Reasons 1) SU LR ; TU LN 1)________________________ 2) SU = LR; TU = LN 2) ________________________ 3) SU = ST + TU 3)________________________ LR = LN + NR 8. 4) ST + TU = LN + NR 4)________________________ 5) ST + LN = LN + NR 5)________________________ 6) ST + LN – LN = LN + NR - LN 6)________________________ 7) ST = NR 7)________________________ 8) ST NR 8)________________________ Complete the proof: Given: AB DE ; B is the midpoint of AC ; E is the midpoint of DF Prove: BC EF Statements Reasons 1) ________________________ 1)Given ________________________ ________________________ 2) AB = DE 2) ________________________ 3) ________________________ 3) Definition of a midpoint ________________________ 4) BC = DE 4)________________________ 5) BC = EF 5)________________________ 6) BC EF 6)________________________ Geometry Proof Study Guide Page 4 STUDY GUIDE ANSWERS 2. a. True e. True LMN LMN If TUV XYZ then XYZ TUV . b. False f. False If A B and B C , then c. False g. True A C . d. True h. False 90o 4. Reasons: 46 o 2) Distributive property 138 o 3) Combine like terms (or Simplify) o 17 4) Addition property of equality 5) Division property of equality 1. a. b. c. 3. a. b. c. d. 5. Statements: 1) LMN is a right angle 2) m LMN=90o 3) Point K is in the interior of LMN 4) m LMK + m KMN = m LMN 5) m LMK + m KMN = 90o 6) LMK and KMN are complementary 6. Reasons: 1) Given 2) Angles that form a linear pair are supplementary (Linear pair postulate) 3) Supplementary angles have a sum of 180o (Definition of supplementary angles) 4) Transitive property of equality 5) Subtraction property of equality 7. Reasons: 1) Given 2) Congruent segments have equal measures (Definition of congruent segments) 3) Segment addition postulate 4) Transitive property of equality 5) Substitution property of equality 6) Subtraction property of equality 7) Simplify 8) Segments that have equal measures are congruent (Definition of congruent segments) 8. Statements/Reasons: 1) AB DE ; B is the midpoint of AC ; E is the midpoint of DF 2) Segments are congruent have equal measures (Definition of congruent segments) 3) AB = BC; DE = EF 4) Transitive property of equality 5) Transitive property of equality 6) Segments that have equal measures are congruent (Definition of congruent segments)