Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
BAB III PRINT OUT 3.1 Data awal Buatlah analisis untuk permintaan sari buah dengan menggunakan uji normalitas dan uji partial correlation. Data penjualan permintaan sari buah di Malang tahun 2001-2015 Variable View Data View 3.2 Output 3.2.1 Regressi Variables Entered/Removedb Model 1 Variables Variables Entered Removed X4, X2, X1, X3a a. All requested variables entered. b. Dependent Variable: Y Method . Enter Model Summaryb Model R Std. Error of the Square Estimate R Square .636a 1 Adjusted R .404 .166 66.803 a. Predictors: (Constant), X4, X2, X1, X3 b. Dependent Variable: Y ANOVAb Model 1 Sum of Squares df Mean Square Regression 30270.188 4 7567.547 Residual 44626.746 10 4462.675 Total 74896.933 14 F Sig. .227a 1.696 a. Predictors: (Constant), X4, X2, X1, X3 b. Dependent Variable: Y Coefficientsa Standardized Unstandardized Coefficients Model 1 B (Constant) Coefficients Std. Error Beta 255.606 234.426 X1 .080 .184 X2 .646 X3 X4 t Sig. 1.090 .301 .116 .433 .674 .268 .655 2.414 .036 -.119 .167 -.192 -.712 .493 -.108 .165 -.172 -.652 .529 a. Dependent Variable: Y Residuals Statisticsa Minimum Predicted Value Maximum Mean Std. Deviation N 485.18 630.16 560.27 46.499 15 -106.468 64.909 .000 56.459 15 Std. Predicted Value -1.615 1.503 .000 1.000 15 Std. Residual -1.594 .972 .000 .845 15 Residual a. Dependent Variable: Y 3.2.2 Deskriptif Descriptive Statistics Std. Minimum Maximum Mean Deviation N Statistic Unstanda rdized Residual Valid N (listwise) Statistic Skewness Kurtosis Std. Std. Statistic Statistic Statistic Statistic Error Statistic Error 15 -106.46759 64.90923 .000000 56.45905 0 322 -.738 .580 -.761 1.121 15 3.2.3 Uji Multikolineriatas 1. Correlinearity Statistic Coefficientsa Collinearity Statistics Model 1 Tolerance VIF X1 .829 1.207 X2 .809 1.237 X3 .822 1.217 X4 .854 1.172 a. Dependent Variable: Y 2. Partial Correlation Correlations Control Variables Y X1 X2 X1 Correlation X4 -.217 .046 -.363 Significance (2-tailed) . .456 .876 .202 df 0 12 12 12 -.217 1.000 .438 .147 .456 . .117 .615 12 0 12 12 Correlation .046 .438 1.000 .040 Significance (2-tailed) .876 .117 . .891 12 12 0 12 -.363 .147 .040 1.000 .202 .615 .891 . 12 12 12 0 Correlation df df X4 X3 1.000 Significance (2-tailed) X3 X2 Correlation Significance (2-tailed) df