Download The Intelligent Light Bulb: A Negative Feedback Experiment

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Transistor–transistor logic wikipedia , lookup

Integrating ADC wikipedia , lookup

Surge protector wikipedia , lookup

CMOS wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Power electronics wikipedia , lookup

Voltage regulator wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Operational amplifier wikipedia , lookup

Schmitt trigger wikipedia , lookup

Current mirror wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
Electronics
Lab 7
Spring 2015
The Intelligent Light Bulb: A Negative Feedback Experiment
1. Measure the resistance of your new device (a photocell) both when it is exposed to light and
when it is in the dark. Describe what you observe.
2. A Manual Feedback Circuit: Before connecting any circuitry, wire your Triple Output DC
Power Supply as described on page 36 of its manual such that you can set output B to -15 V
while also being able to vary output A. In addition, connect the negative terminal of the 5-V
fixed supply to the common ground (green terminal). That way, when you use three supplies
at the same time, they will all have the same ground. Then connect your photocell as shown
on the right side of the diagram below, using your 10k POT as the variable resistor. Add
about 400  of resistance in series with the POT and the -15-V terminal to protect the
photocell. Note that the photocell connects to the +5 V terminal rather than +15 V to limit its
power dissipation and also because you’ll need to vary the +15-V supply in the next step.
Set the POT initially for zero resistance.
Use the larger of the two types of light bulbs that you have in your collection. It is rated at
about 14 V and 240 mA. Turn the variable 15-V supply to its lowest output voltage and
connect the light bulb as shown on the left side of the diagram. Turn on the power supply
and bring the supply voltage up to about 14 volts, at which point the light bulb should be
quite bright.
0-14
5–15VV
+5 V
Light
#57
bulblamp
photocell
A
Connect your DMM to measure the voltage at
point A (with respect to…?). Hold the bulb a
few centimeters from the photocell and verify
that the voltage at point A is positive. If it isn’t,
adjust the POT resistance appropriately. Should
you increase or decrease the POT’s resistance?
Now darken the photocell and verify that point A
goes negative. Why is there a change in voltage
polarity at point A?
Now bring the bulb a few centimeters from the
photocell. Adjust the variable +15-V supply
downward until the voltage at point A is close to
10k POT
RSB
zero. Move the bulb a few centimeters further
+ 400 
~1 k
from the photocell and adjust the voltage again
to keep point A at essentially zero volts. What
happens to the brightness of the bulb? Continue
to move the bulb away in steps of a few
–15 V
centimeters, adjusting the bulb voltage each time
to keep point A at essentially zero volts. When you get the bulb as far from the photocell as its
wires will permit, the bulb should be at essentially full intensity. If the bulb is still dim, or if you
need to get it excessively bright before you get the photocell far from it, adjust the resistance of
your POT as necessary. The exact resistance isn’t critical; you just want a good range of
variation in bulb brightness over the limits of the bulb’s range of position. Then repeat the
experiment of moving the bulb away from the photocell, this time adjusting the voltage across
the bulb continuously in an effort to keep point A at essentially zero volts. Make sure that you
do not exceed 14 V across the light bulb! Before proceeding to part 3, be sure that you
understand the answers to these questions:
1. Why does the bulb have to get brighter as you move it away?
Page 1 of 4
Electronics
Lab 7
Spring 2015
2. If you keep point A at zero volts, qualitatively, what happens to the resistance of the
photocell as you move the bulb away?
3. If you keep point A at zero volts, what happens to the apparent brightness of the bulb as
perceived by the photocell?
4. Where is the feedback loop in this set-up?
Leave your circuit connected and proceed to part 3.
3. An Operational Amplifier/Comparator: Disconnect the bulb from the power supply. Set
the positive and negative 15-volt supplies for about ±15 V. Turn off the power supply. Use
your L165V operational amplifier and wire it as shown below. Leave the inverting (–) input
disconnected for now, but run a wire to it so you can readily connect it elsewhere later.
Check all wiring and make sure that the wires that you have attached to the L165V are not
electrically touching each other before turning on the power supply; the L165V is fairly
expensive as integrated circuits go. If you
would like additional cables or alligator clips,
let Justin or me know. The L165V is like a 741
except that the L165V can supply up to 3 A of
current. Note that the connections to the
L165V are shown from the side where the
plastic is thickest.
After checking the wiring, turn on the power
supply. Monitor the output of the op amp with
your DMM. Connect the (–) input of the op
amp to the +5-V supply. What happens at the
output? Does the bulb light? Why or why not?
Now try connecting the (–) input to the +15-V supply. Again, what happens? Now connect
the (–) input to the –15-V supply. What happens? Why? What’s the diode for? Make sure
that you understand what is happening before going on to part 4.
Page 2 of 4
Electronics
Lab 7
Spring 2015
4. Putting It All Together: Now connect point A to the (–) input of the op amp, resulting in
the circuit shown below.
a.
Observing
the
Intelligent
Light
Bulb: Point the bulb at the
photocell and increase and
decrease the separation between
Light bulb
the bulb and the photocell.
What happens? Why does the
bulb get brighter as you move it
away from the photocell? What
is happening to the voltage at
point A? What is happening to the resistance of the photocell?
What is happening to the apparent brightness of the bulb as perceived by the
photocell? Where is the feedback loop in this set-up?
b.
DC Analysis of the Intelligent Light Bulb: Connect a DMM to the output of the
op amp (before the diode) and another DMM to measure the voltage at point A.
Observe the voltages as you move the light bulb. Are your results consistent with
what you expect? Why / why not?
c.
(Optional for 104). AC Analysis of the Intelligent Light Bulb: Now connect your
oscilloscope so that one channel displays the voltage at point A and the other channel
displays the output of the op amp. Explain what’s going on.
5.
An Optical Flip-Flop: Get together with another group and arrange your circuits so that
each group’s photocell points at the other group’s light bulb. Note the states of the two
bulbs. What happens when you pass your hand between a lit bulb and the photocell that
it’s shining on? Explain what’s going on. Why do you think that this circuit is called a
bistable circuit or a flip-flop?
6.
Write-up:
1. Photocell: Describe the behavior of the photocell when exposed to light and when it is
in the dark.
2. A Manual Feedback Circuit:

Where do you connect the two leads from the DMM when measuring the voltage
at point A?

When you darkened the photocell, why is there a change in voltage polarity at
point A?

As you increase the separation between the bulb and the photocell, what happens
to the brightness of the bulb? Why?

If you keep point A at zero volts, qualitatively, what happens to the resistance of
the photocell as you separate the bulb from the photocell?
Page 3 of 4
10k POT
+ 400 
Electronics
Lab 7
Spring 2015

If you keep point A at zero volts, what happens to the apparent brightness of the
bulb as perceived by the photocell?

Where is the feedback loop in this set-up?
3. An Operational Amplifier/Comparator:

With the (–) input of the op amp connected to the +5-V supply, what happens at
the output of the op amp? Does the bulb light? Why or why not?

With the (–) input of the op amp connected to the +15-V supply, what happens at
the output of the op amp? Does the bulb light? Why or why not?

With the (–) input of the op amp connected to the -15-V supply, what happens at
the output of the op amp? Does the bulb light? Why or why not?

What is the role of the diode in this circuit?
4. Putting It All Together:
a. Observing the Intelligent Light Bulb:

Describe what happens when you point the bulb at the photocell and increase
and decrease the separation between the bulb and the photocell.

Why does the bulb get brighter as you move it away from the photocell?

What is happening to the voltage at point A?

What is happening to the resistance of the photocell?

What is happening to the apparent brightness of the bulb as perceived by the
photocell?

Where is the feedback loop in this set-up?
b. DC Analysis of the Intelligent Light Bulb:

Describe what happens to the voltage at point A as you move the light bulb.

Are these observations consistent with what you expect? Why / why not?
c. (Optional for 104). AC Analysis of the Intelligent Light Bulb:

Explain what you observe when you look at the voltage at point A and the
output of the op amp. What’s going on?
5. An Optical Flip-Flop:

What happens when you pass your hand between a lit bulb and the photocell
that it’s shining on?

Explain what’s going on.

Why do you think that this circuit is called a bistable circuit or a flip-flop?
6. Summary:

In one paragraph, explain how the intelligent light bulb circuit works.
Page 4 of 4