Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The trigonometric Ratios, Functions, Equations and Identity Trigonometric Ratios Someone wants to measure a flag pole by clinometers Adaptif Trigonometric Ratios Learning Experience A student of building construction technique wants to make a house roof frame, and the size as follows. Then the length X is … 2m xm 3 4 m Adaptif Trigonometric Ratios Learning Experience The top of tower from A with elevation angle is 300 and seen from B with elevation angle 450 like in the picture. If the distance A and B is 20 meters, then what is the height of that tower? 300 A 450 B 20 m Adaptif What is going on? Trigonometric Ratios If there are several teachers give task for the students, as follows: “A right triangle ABC has sides AC=4, BC=6 and AB=8. Then determine the A side.” Adaptif Trigonometric Ratios A Glance ??? There isn’t any strange in the exercise that is given by the teacher, is there? The students try to calculate the side A by previously calculate Sinus A value The teachers don’t feel guilty Adaptif Trigonometric Ratios How many meters the height of stair? 3M 4M Adaptif Trigonometric Ratios Which is the longest circumference of the shape ? 1) 3) 2) 4) Adaptif Trigonometric Ratios The Scope 1. Trigonometric Ratios of side 2. Specific Angles ( special ) 3. Trigonometric Formula 4. Cartesius Coordinat and Pole 5. Sine, Cosine Rules and Triangle Areas 6. Trigonometric Identity 7. Trigonometric Equation Adaptif Trigonometric Ratios SINE IS A COMPARISON BETWEEN SIDE OF FRONT ANGLE AND HYPOTENUSE OF A RIGHT SIDE TRIANGLE C AC Sin AOC = OC 0 A Adaptif Trigonometric Ratios Cosine is a comparison value between side of angle side and hypotenuse of right side triangle C Cos AOB = O OA OC A Adaptif Trigonometric Ratios Tangent is ratio value between side of angle front and side of angle side C AC Tan AOC = OA O A Adaptif Trigonometric Ratios Angle in the Base Position C Y B C θ θ A Angle θ isn’t in the base position B A X Angle θ is in the base position Side AB is beginning side from angle θ Side AC is limitation of side from angle θ Adaptif TRIGONOMETRIC RATIOS SINE CONCEPT BB' CC' DD' EE' ... AB AC AD AE Adaptif TRIGONOMETRIC RATIOS COSINE CONCEPT AB' AC' AD' AE' ... AB AC AD AE Adaptif TRIGONOMETRIC RATIOS TANGENT CONCEPT BB' CC' DD' EE' ... AB' AC' AD' AE' Adaptif TRIGONOMETRIC RATIOS Given triangle ABC, the angle is at C. The lenght AB side = 10cm, BC side = 5cm. Cos A value and tan A orderly are.... 10 A ? gotten 5V3 B 5 C Maka diperoleh : sin A = ½ Jadi : cos A = ½ V3 tan A = 1/3 V3 Adaptif TRIGONOMETRIC RATIOS The expanded exercise By measuring the length of BC stairs, and measuring the size of ABC angle, and using the sine concept, then the students are given task to determine the height of second floor from base floor. C Stair A B Adaptif TRIGONOMETRIC RATIOS C By measuring the size of BAC angle and AB distance, and also using cosine concept, then the students can determine the length of the pole rope AC that must be changed! Pole rope Pole A B Adaptif TRIGONOMETRIC RATIOS Specific Angles C A D Equilateral ABC The sides = 2a B S R P Q A square PQRS The sides = 2a Adaptif TRIGONOMETRIC RATIOS By using the picture above, determine the ratios value: 0o 300 450 600 900 …. …. …. …. …. …. …. …. …. …. tg …. …. …. …. …. ctg sec cos ec …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. sin cos Adaptif TRIGONOMETRIC SpecificRATIOS Angles 45o V2 45o 1 90o 1 sin 45o = ½ V2 cos 45o = ½ V2 tan 45o = 1 sin 30o = ½ cos 30o = ½ V3 30o 2 tan 30o = 1/3 V3 V3 sin 60o = ½V3 90o 60o 1 cos 60o = ½ tan 60o = V3 Adaptif TRIGONOMETRIC RATIOS TROGONOMETRIC FORMULAS A. Relation/Base Formula of Trigonometric Function 1. a. Opposite Relation: 1 1 1 cot α = tan sec α = cos csc α = sinα b. Division Relation: sinα tan α = cosα cos α cot α = sin α c. “Pythagoras” Relation: sin2α + cos2α = 1 (and its variety) tan2α + 1 = sec2α 1 + cot2α = csc2α Adaptif TRIGONOMETRIC RATIOS Related Angles 2. Trigonometric Function of related angles a. sin(90 – α)o = cos αo cos(90 – α)o = sin αo tan(90 – α)o = cot αo cot(90 – α)o = tan αo sec(90 – α)o = csc αo csc(90 – α)o = sec αo b. sin(180 – α)o = sin α0 cos(180 – α)o = –cos α0 tan(180 – α)o = –tan α0 sin(180 + α)o = –sin αo cos(180 + α)o = –cos αo tan(180 + α)o = tan αo c. sin(360 – α)o = –sin α0 cos(360 – α)o = cos α0 tan(360 – α)o = –tan α0 sin(–αo) = –sin αo cos(–αo) = cos αo tan(–αo) = –tan αo Value ”+” Sin Tan All Cos Adaptif TRIGONOMETRIC RATIOS Specific Things 1. If αo + βo + γo = 180o , then: sin(α + β)o = sin(180 – γ)o = sin γo cos(α + β)o = cos(180 – γ)o = –cos γo sin ½ (α + β)o = sin(90 – ½ γ)o = cos ½ γo cos ½ (α + β)o = cos (90 – ½ γ)o = sin ½ γo 2. If αo + βo + o = 270o, then: sin(α + β)o = sin(270 – )o = –cos o cos(α + β)o = cos(270 – )o = –sin o Adaptif Cartesians Coordinate and Pole Y P( x,y ) x Y x r y x o Cartesians PoleCoordinate Coordinate to Cartesians x = r cos a Y = r sin a P( r, ) y O X Pole Coordinate Cartesians Coordinate to Pole r2 = x2 + y2 y tan α = x Adaptif Trigonometric Formula in Triangles 1. Sine Rules (formula) in ABC Triangles: a b c sin sin sin 2. Cosine Rules (formula): a2 = b2 + c2 – 2bc cos α b2 = a2 + c2 – 2ac cos β or c2 = a2 + b2 – 2ab cos γ b2 c 2 a 2 cos α = 2bc c 2 a 2 b2 cos β = 2ca cos γ = a2 b2 c2 2ab Adaptif Trigonometric Formula in Triangles From a quay, boat A travels with 10 knot speed (mil/hour) to the 160o and boat B to the 220o with 16 knot speed. So what is the distance of two boats two hours later? U AB2 = 202 + 322 – 2. 20 . 32 . cos 60o = 400 + 1024 – 640 220o O 160o = 784 60o 20 32 B AB = 28 A The distance between two boats is 28 mil Adaptif Trigonometric Formula in Triangles C 20 37 51 A Find tan A value and sin B? cos A = so cos B = cos B = so sin A = B Adaptif TRIGONOMETRIC FUNCTION FORMULAS OF TWO ANGLES The Difference Formula 1. Addition Formula sin(α – β) = sin α cos β – cos α sin β sin(α + β) = sin α cos β + cos α sin β cos(α – β) = cos α cos β + sin α sin β cos(α + β) = cos α cos β – sin α sin β tan( ) tan tan 1 tan tan tan ( ) A half Angle Formula 2. Double Angle Formula Sin 2α = 2 sin α cos α 2 2 Cos 2α = cos 2 tanα – sin α tan 2 1 tan 2 tan tan 1 tan tan 2 sin2 ½ α = 1 - cos α 2 cos2 2½ α = 11+cos cos α 1 tan 2 1 cos sin 1 tan 2 1 cos Adaptif TRIGONOMETRIC FUNCTION FORMULA OF TWO ANGLES 3. Triple angles formula Sin 3α = 3 sin α – 4 sin3 α Cos 3α = 4cos3α – 3 cos α 3 tan tan 3 tan 3 1 3 tan 2 Adaptif The difference, Addition Formula and Division Result of Sine/cosine Function 1. Multiplication Result of sine and cosine 2 sin α cos β = sin(α + β) + sin(α – β) 2 cos α sin β = sin(α + β) – sin(α – β) 2 cos α cos β = cos(α + β) – cos(α – β) –2 sin α sin β = cos(α + β) – cos(α – β) or 2 sin α sin β = cos(α – β) – cos(α + β) 2. Addition and Difference of Sine/Cosine Function sin A + sin B = 2 sin ½ (A + B) cos ½ (A – B) sin A – sin B = 2 cos ½ (A + B) sin ½ (A – B) cos A + cos B = 2 cos ½ (A + B) cos ½ (A – B) cos A – cos B = –2 sin ½ (A + B) sin ½ (A – B) Adaptif TRIGONOMETRIC IDENTITY Identity is an open sentence which has true value for every its variable value substitution for example : sin2α + cos2α = 1 Prove ! sin x 1 cos x 2 csc x 1 cos x sin x sec4 – sec2 = tan4 + tan2 Adaptif TRIGONOMETRIC IDENTITY Prove: sin x 1 cos x 1 cos x sin x sin 2 x (1 cos x ) 2 (1 cos x ) sin x sin 2 x 1 2 cos x cos 2 x (1 cos x ) sin x 2 2 cos x (1 cos x ) sin x 2 sin x 2 csc x right space (proven) Adaptif TRIGONOMETRIC IDENTITY Prove: Alternative I From left space Left space: sec4 – sec2 Alternative II From right space Right space: tan 4 + tan 2 = sec2(sec2 – 1) = tan 2(tan 2 + 1) = sec 2 x tan 2 = (sec 2 – 1) sec 2 = (1 + tan 2) x tan 2 = sec 4 – sec 2 = tan 2 + tan 4 = left space (proven) = tan 4 + tan 2 = right space (proven) Adaptif Simple Trigonometric Equation Formula I : 1). If sin x sin then: x + k. 360 or x (180 ) + k. 360 , k B 2). If cos x cos then : x + k. 360 or x + k. 360, k B 3). If tan x tan then : x + k. 180 k B Adaptif TRIGONOMETRIC EQUATION Formula II : At the same condition is equal to zero 1). If sin x 0 then: x k.180 , k B 2). If cos x 0 then: x 90 + k.180 , k B 3). If tan x 0 then: x k.180 , k B Adaptif TRIGONOMETRIC EQUATION Formula III : Equation contains negative value 1). If sin x - sin sin (-) then: x - + k. 360 or x (180 + ) + k. 360 , k B 2). If cos x - cos cos (180 + ) then: x 180 + + k. 360 or x - 180 - + k. 360 , k B 3). If tan x - tan tan (-) then: x - + k. 180 , k B Adaptif TRIGONOMETRIC EQUATION Example Determine the soluton set of the trigonometric equation below: For 0 ≤ x < 360: a) sin x0 = sin 400 b) cos 2x0 = Answer: 1 2 a) sin x0 = sin 400 x = 40 + k.360 or x = (180 – 40) + k.360 For k = 0 → x = 40 k = 0 → k = 140 So the solution set is {40, 140} is {30, 150, 210, 330} Adaptif TRIGONOMETRIC EQUATION 1 = 2 cos 2x 0 = cos 60 b) cos 2x 0 0 then 2x = 60 + k.360 or 2x = -60 + k.360 x = 30 + k.1 80 for k = 0 → x = 30 for k = 1 → x = 150 x = -30 + k.180 k = 1 → x = 2100 k = 2 → x = 330 So the solution set is {30, 150, 210, 330} Adaptif TRIGONOMETRIC EQUATION Exercise : 1.Given ABC triangle, AC =25 cm, BC=40 cm, and the length of high line from C, is CD=24 cm. Cos A and tan B value orderly is.... 2. Two boats leave a quay at the same time. The first boat sails in the bearing of 030° with 8 km/hour, while the second boat sails in the bearing of 090° with 10 km/hour. The distance of two boats after sailing for 3 hours is ... km Adaptif Application to the competence program A roof frame of a building is like the next picture: Calculate the length of AB B A 2,20 m 35,30 28,50 10,30 m The length of AB is 3,14 m Adaptif Application to the competence program A See the picture: 18 cm 400 B 950 700 C a) Calculate the distance of AB b) Calculate the distance of BC a) The distance of AB = 12,6 cm b) The distance of BC = 21,97 cm Adaptif