Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EXPANSION FOR COS AND SINE LOCI IN COMPLEX NUMBER Expansion of Sin and Cosine Expand this! 2 3 j 4 Expansion of Sin and Cosine Theorem 6: (Binomial Theorem) If n N then a b a n n C1a n 1b n C2 a n 2b 2 ... n Cr a n r b r ... n Cnb n n Expansion of Sin and Cosine Example 1.20 Expand using binomial theorem, then write in standard form of complex number: a) b) 2 3 j 3 cos j sin 4 Answer: a ) 46 9 j b) cos 4 6 cos 2 sin 2 sin 4 j 4 cos3 sin 4 cos sin 3 Expansion of Sin and Cosine Example 1.19: State cos 5 in terms of cosines. De Moivre’s Theorem ? Expansion of Sin and Cosine Theorem 5: If z cos j sin a) zn b) zn 1 n z 1 z n , then: 2 cos n 2 j sin n Theorem 6: (Binomial Theorem) If n N, then: a b n a n n C1a n1b n C2 a n2b 2 ... n Cr a nr b r ... n Cnb n Expansion of Sin and Cosine Example 1.19: State cos 5 in terms of cosines. Solution: By applying Theorem 5 and Binomial Theorem 5 1 5 z 2 cos z 1 Theorem 5 Expansion of Sin and Cosine Expand LHS using Binomial Theorem: 5 1 1 5 5 4 1 5 3 1 z z C1 z C2 z z z z 3 4 2 5 1 5 2 1 5 1 1 5 C3 z C 4 z C5 z z z 1 1 1 5 3 z 5 z 10 z 10 5 3 5 z z z 1 5 1 3 1 z 5 5 z 3 10 z z z z 2 cos 5 52 cos 3 102 cos 2 cos 5 10 cos 3 20 cos 2 Expansion of Sin and Cosine Expand RHS: 2 cos 5 32 cos 5 3 Equate (2) and (3): 32 cos 5 2 cos 5 10 cos 3 20 cos 1 5 5 5 cos cos 5 cos 3 cos 16 16 8 Expansion of Sin and Cosine Example 1.21: By using De Moivre’s theorem and Binomial theorem, prove that: sin 4 4 cos 3 sin 4 cos sin 3 Expansion of Sin and Cosine Solution: By applying DMT: cos j sin 4 cos 4 j sin 4 1 Expand LHS using Binomial theorem: cos j sin 4 cos 4 6 cos 2 sin 4 sin 4 j 4 cos3 sin 4 cos sin 3 2 Expansion of Sin and Cosine Equate (1) and (2), then compare: cos 4 j sin 4 cos 4 6 cos 2 sin 4 sin 4 j 4 cos3 sin 4 cos sin 3 Real part: cos 4 cos 4 6 cos 2 sin 4 sin 4 3 3 Imaginary part: sin 4 4 cos sin 4 cos sin Expansion of Sin and Cosine Example 1.22: Using appropriate theorems, state the following in terms of sine and cosine of multiple angles : a b cos 3 sin 5 Answer: a cos 3 cos 3 3 cos sin 2 b 1 5 5 sin sin 5 sin 3 sin 16 16 8 5 Loci in the Complex Number Since any complex number, z = x+iy correspond to point (x,y) in complex plane, there are many kinds of regions and geometric figures in this plane can be represented by complex equations or inequations. Definition 1.9 A locus in a complex plane is the set of points that have specified property. A locus in a complex plane could be a straight line, circle, ellipse and etc. Loci in the Complex Number i) | z − a |= b Loci in the Complex Number Example 1.22: Equation of circle with center at the origin and radius, r z z0 r x x2 y2 r 2 P on circumference: z z0 r r P outside circle: y O0,0 P x, y z z0 r P inside circle: z z0 r Loci in the Complex Number Example 1.23: What is the equation of circle in complex plane with radius 2 and center at 1+j Solution: z 1 j 2 Distance from center to any point P must be the same x x 12 y 12 4 r z 0 1,1 y P x, y Loci in the Complex Number Loci in the Complex Number Example 1.23: Find the equation of locus if: z j z2 Loci in the Complex Number Solution: x yj j x j y 1 x yj 2 x 2 jy x 2 y 1 2 x 2 2 y 2 x 2 y 1 x 2 y 2 2 2 x2 y 2 2 y 1 x2 y 2 4x 4 y 2 x 3 2 * Locus eq : A straight line eq with m = -2 Loci in the Complex Number x y 2 x 3 4 3 0, 2 0,1 3 ,0 4 2,0 P x, y Distance from point (0,-1) and (2,0) to any point P must be the same y Loci in the Complex Number Example 1.24: Find the equation of locus if: i) z2j 1 z 1 ii ) z 3 2 j 5 Loci in the Complex Number i) z2j z2j 1 1 z 1 z 1 z 2 j z 1 x yj 2 j x yj 1 x y 2 j x 1 yj x 2 y 2 2 x 12 y 2 x y 2 2 2 2 x 1 y 2 2 2 x 2 y 2 2 x 12 y 2 x2 y 2 4 y 4 x2 2 x 1 y 2 x2 y 2 4 y 4 x2 2 x 1 y 2 0 4 y 2 x 3 0 y 1 3 x . 2 4 Loci in the Complex Number ii ) z 3 2 j 5 x yj 3 2 j 5 x 3 y 2 j 5 x 32 y 2 2 5 x 3 2 y 2 2 52 * Locus eq : A circle of radius 5 and centre (3,-2) and. Loci in the Complex Number Loci in the Complex Number Interpret the following loci complex plane. (i) Arg z 4 (ii) Arg ( z 1) 4 (i) Arg z represents a half ray as shown in the following diagram 4 Note that the point z = 0 is not included as arg z is not defined for z = 0. (i) Arg (z 1) 4