Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
A Method for finding a Square Root of a 2x2 Matrix By: P. C. Somayya. [email protected] a11 a12 a21 a22 Let A = and B = ± √ A. a11+ T a12 then B = ± (1/R) a21 Where a22 + T T= ±√|A| R = a11 + a12 + 2 T Ref: Paper entitled “ Root of a 2x2 Matrix” Published in The Mathematics Education Vol.. XXXI. No. 1, March 1997. Siwan, Bihar State. INDIA, is given below : The Mathematics Education Vol. XXXI, No. 1, March 1997. Root of a 2 x 2 Matrix By P. C. Somayya, Vice Principal, S.B.E.S College of Science, Aurangabad 431 001, M.S. India. [ Received March 28, 1995 ] Summary: A Method for finding root of a 2x2 matrix is proposed in this paper. Method : Suppose A11 A12 A= A21 A22 And B = A1/2 Case 1 : (2) If A12 = A21 = 0 ±√A11 Obviously we get, 0 B= (3) 0 Case 2: (1) ±√A22 If A12=0 & A21 ≠ 0 It can be easily verified that ±√A11 , 0 B= (4) ± A21 /(√A11 + √A22) ±√A22 Similarly, we get, ±√A11 , ± A12/(√A11 + √A22) B= (5) 0 ±√A22 If A12 ≠ 0 and A21 = 0. Case 3: If A12 ≠ 0 and A21 ≠ 0 then , (A11 + T) B= ±(1/R) (6) A21 Where A12 (A22 + T) T = ± | A | ½ = ± √ A11 A22 - A12 A21 { 53 } (7) { 54 } And R2 = A11 + A22 + 2 T , R ≠ 0 Proof : B * B = ( 1/ R2 ) (A11 + T) A12 A21 = ( 1/ R2 ) (8) (A11 + T) (A22 + T) A21 A12(A11+T)+A12(A22+T) A21(A11+T)+A21(A22+T) (A22+T)2 + A12 A21 A12 (A11+A22+ 2T) (A22)2+2A22T +(T2+ A12 A21) A21(A11+A22+2T) (A11) 2+ 2 A11 T + A11 A22 A12 R2 A21R2 = ( 1/ R2 ) (A22 + T) (A11 + T)2 +A12 A21 = ( 1/ R2 ) (A11) 2+ 2 A11 T + (T2+A12 A21) = ( 1/ R2 ) A12 (A22)2+2A22T +A11 A22 (A11) R2 A12 R2 A21 R2 (A22) R2 = A. Example: (1) 1 3 5 6 A= , |A| = -9 , T= ± 3i (1± 3i ) and R2 = A11+A22+2T= 1+6±6i = 7±6i 3 B= [± 1/ √(7±6i)] 5 (2) 11 -3 2 6. (6± 3i ). A = |A| = 72 and T= ±6√2 , R2 = 17 ±12 √2 11±6√2 B -3 = [± 1/ √(17±12√2)] 2 6 (1±√2)