Download Mark Scheme - June 2002

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME
Question
Number
1.
Scheme
Marks
sin 5x + sin x  2 cos 2x sin 3x
cos 5 x + cos x  2 cos 2x cos 3x
use of one
M1
both correct
A1
Equation becomes: 0 = 2 cos 2x (sin 3x – cos 3x)
i.e. cos 2 x = 0
M1
tan 3x = 1
M1
cos 2x = 0  2x =
 3
 3
,
, ...  x = ,
, ...
2 2
4 4
1st solution
M1
tan 3x = 1  3x =
 5 9
 5 9
,
,
...  x =
,
,
, ...
4
12 12 12
4 4
1st solution
M1
a correct 2nd solution
A1
 x=
  5 3
,
,
,
12 4 12
4
all 4
A1
(8 marks)
2.
(1 – 4x)p =
p ( p  1)
p( p  1)( p  2)
p( p  1)( p  2)( p  3)
(4x)2 +
(4x)3 +
(4x)4...
2!
3!
4!
Equation:
p ( p  1)
p( p  1)( p  2)( p  3)
 42 =
 44
2!
4!
1=
i.e.
0 = 4p2 – 20p + 21
i.e.
0 = (2p – 3)(2p – 7)
i.e.
p=
( p  2)( p  3)  16
12
3
7
or
2
2
p  0 and p  1
p
cancel or factor p(p – 1)
at least x2 term
M1 (ignore x’s)
M1
A1
coefficient of x3 > 0  p(p – 1)(p – 2) < 0
so
attempt equation
M1
solving
M1
both
A1
x3 coefficient examined
M1
A1
7
3
p=
2
2
A1
(9 marks)
1
Question
Number
3.
Scheme
Marks
At (14, 1), t = 1
B1
dy
dy
 4t
1
=
, at t = 1
=   gradient of normal, = 3
2
3
d x 15  3t
dx
M1, M1, A1
Equation of normal is: y – 1 = 3(x – 14) [or y = 3x – 41]
M1
3 – 2t2 – 1 = 3(15t – t3 – 14)
Cuts C when:
M1
3t3 – 2t2 – 45t + 44 = 0
i.e.
(t – 1) is a factor

i.e.
simplified cubic = 0
A1
(t – 1) is a factor
M1
[]
A1
(t – 1)[3t2 + t – 44] = 0
(t – 1) (3t – 11)(t + 4) = 0
t=
M1
11
, 4
3
(11 marks)
4.
dy
dy
d
: 3x2 + 3y2 , 3x
 3y = 0
dx
dx
dx
M1 A1, M1
dy
= 0,  y = x2
dx
M1, A1
substitute back:
x3 + x6 – 3x  x2 = 48
x6 – 2x3 – 48 = 0
A1
(x3 – 8)(x3 + 6) = 0
M1
i.e.
 x = 2 and y = 4
so x3 = 8
1
A1
2
or x3 = 6  x =  6 3 and y = 6 3
A1
(10)
2
dy
dy
d
d2 y
d2 y
 dy 
again: 6x + 6y   + 3y2 2  3
 3x 2  3
=0
dx
dx
dx
dx
dx
 dx 
(x = 2, y = 4) < 0
(2, 4) is maximum
A1
check signs of y
M1
dy
2x
d2 y
=0
=
2
dx
x  y2
dx
1
2
(x =  6 3 , y = 6 3 ) > 0
M1
1
2
(  6 3 , 6 3 ) is minimum
A1
(4)
(14 marks)
Alternative
for last 4
marks
y
x
Sketch from top left to bottom right
M1
Min in 2nd quad, max in first quad
M1
1
2
 minimum at (  6 3 , 6 3 )
maximum at (2, 4)
2
A1
A1
(4)
EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME
Question
Number
5.
(a)
Scheme
sin (cos x) = 0  cos x = 0 (, ...)
 x=


or 
2
2
so A is (
x = 0  y = sin (1) ,
(b)
Marks
(ignore others)


, 0), C is (  , 0)
2
2
M1
A1 both
B1
i.e. B is (0, sin (1))
dy
= cos (cos x) sin x
dx
M1
 dy 
x = 0 at B and   = 0,  B is a stationary point
 dx  0
A1
(3)
(2)
(c) For   0, sin   
cos x  0 for x  [ 0, /2]  sin (cos x)  cos x; equality when x =
Equation of BC is y =
 sin (1)
x + sin (1)
 /2
2

 convex line is below curve,  sin (1) 1 
 

2
attempt equation BC

x   sin (cos x)

equality when x = 0,

(d)
A1 cso; B1
M1
A1 cso

2
B1 (both)
(6)


2
2
=
cos
x
d
x
sin
x

 , =1

0

0
I<1
M1, A1 cso

2
 2 
1 

 sin (1) 1  x dx OR area of triangle = 2  2 sin (1), I > 4 sin (1)
0


M1, A1 cso (4)
(15 marks)
cso = correct solution only
3
EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME
Question
Number
6.
(a)
Scheme
(3, 0)  m1 = 3 n1 , m2 = 3 n2 and
Marks
 n2 > n1
m2 > m1
M1
curves are symmetric and n1, n2 are both even
M1
(b) so n1 + n2 = 12  n1 = 2, n2 = 10; or n1 = 4, n2 = 8
A1; A1
(4)
(1 each
extra solution)
3

Area = 2
0
 m
2

 m1   x n1  x n2
  dx
M1
3

x n1 1
x n2 1 
= 2(m2  m1 ) x 


n1  1 n2  1 0

M1 A1 ft
smallest area when m1 and m2 are closest M1
i.e. n1 = 4, n2 = 8, m1 = 34, m2 = 38 A1
 8

35 39
4
= 23(3  3 ) 

 0
5
9


= 2  39 – 2  35 +
= 2 [39 – 37 –
8
5
2
5
 35 – 2  37
 35] OR
Use of correct limits
M1
combine powers o3 that differ by 1 or less
M1
16  37 –
(c) Gradient same   n1 x n1 1   n2 x n2 1
i.e.
n1
= x n2  n1
n2
1
2
n1 = 2, n2 = 10  x8 =
( 12 )2 >
1
5
or
8 1
5
=
4
1
5
or x =
1
5
1
5
712
5
OR
 35
A1
Equation based on dy/dx
M1
single x
M1
(8)
4 1
2
or x =
and
 35
n1
n2
OR x = (n2  n1)
n1 = 4, n2 = 8  x4 =
8
5
8 1
5
<
both cases
1
2
,  greatest x =
 12 
1
4
A1 ft
M1, A1
(5)
(17 marks)
ft = follow-through mark
4
EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME
Question
Number
7.
Scheme
(a)
pq =
(b)
x3 +
p=
1
2
3
4
x
i.e. x =
1
2
1
2
1
2
or q =
1
2
= 0  (x 
or x2 +
1
2
(line 3)
1
2
)(x2 +
x + 1 = 0,
1
2
x + 1) = 0
identify; explain
B1; B1 (2)
attempt to divide
M1
correct quadratic
A1
discriminant = ( 12 )2 – 4
< 0  no real roots (so only root is x =
(c)
Marks
x =  is a root   3 +    = 0,
1
2
M1
)
A1 cso
i.e.  = 1 –  2 (  0)
M1, A1
x 3 + x    (x – )[x2 +  x + 1]
M1 [A1]
Discriminant of x2 +  x + 1 is  2 – 4
M1
 x =  is the only real root if  2 – 4 < 0,
(4)
i.e.  < 2 ()
A1 cso
(6)
(d) Student’s method: x(x2 + ) = 
 x =  or x2 +  = 
require
M1
 >0
2+1>0
=
cvs

1 5
2
5 1
<<2
2
or
2 <  < 
attempt cvs
M1
2 correct cvs
A1
5 1
2
A1, A1
(7)
(19 marks)
STYLE INSIGHT & REASONING
(a) S marks
For a novel or neat solution to any of questions 3—7. Apply once per
question in up to 3 questions
S2 if solution is fully correct in principle and accuracy
S6 (S2  3)
S1 if principle is sound but includes a minor algebraic or numerical slip
T mark
For a good and largely accurate attempt at the whole paper
T1
(7 marks)
() indicates final line given in the question paper; ft = follow-through mark; cso = correct solution only
5
Related documents