Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME Question Number 1. Scheme Marks sin 5x + sin x 2 cos 2x sin 3x cos 5 x + cos x 2 cos 2x cos 3x use of one M1 both correct A1 Equation becomes: 0 = 2 cos 2x (sin 3x – cos 3x) i.e. cos 2 x = 0 M1 tan 3x = 1 M1 cos 2x = 0 2x = 3 3 , , ... x = , , ... 2 2 4 4 1st solution M1 tan 3x = 1 3x = 5 9 5 9 , , ... x = , , , ... 4 12 12 12 4 4 1st solution M1 a correct 2nd solution A1 x= 5 3 , , , 12 4 12 4 all 4 A1 (8 marks) 2. (1 – 4x)p = p ( p 1) p( p 1)( p 2) p( p 1)( p 2)( p 3) (4x)2 + (4x)3 + (4x)4... 2! 3! 4! Equation: p ( p 1) p( p 1)( p 2)( p 3) 42 = 44 2! 4! 1= i.e. 0 = 4p2 – 20p + 21 i.e. 0 = (2p – 3)(2p – 7) i.e. p= ( p 2)( p 3) 16 12 3 7 or 2 2 p 0 and p 1 p cancel or factor p(p – 1) at least x2 term M1 (ignore x’s) M1 A1 coefficient of x3 > 0 p(p – 1)(p – 2) < 0 so attempt equation M1 solving M1 both A1 x3 coefficient examined M1 A1 7 3 p= 2 2 A1 (9 marks) 1 Question Number 3. Scheme Marks At (14, 1), t = 1 B1 dy dy 4t 1 = , at t = 1 = gradient of normal, = 3 2 3 d x 15 3t dx M1, M1, A1 Equation of normal is: y – 1 = 3(x – 14) [or y = 3x – 41] M1 3 – 2t2 – 1 = 3(15t – t3 – 14) Cuts C when: M1 3t3 – 2t2 – 45t + 44 = 0 i.e. (t – 1) is a factor i.e. simplified cubic = 0 A1 (t – 1) is a factor M1 [] A1 (t – 1)[3t2 + t – 44] = 0 (t – 1) (3t – 11)(t + 4) = 0 t= M1 11 , 4 3 (11 marks) 4. dy dy d : 3x2 + 3y2 , 3x 3y = 0 dx dx dx M1 A1, M1 dy = 0, y = x2 dx M1, A1 substitute back: x3 + x6 – 3x x2 = 48 x6 – 2x3 – 48 = 0 A1 (x3 – 8)(x3 + 6) = 0 M1 i.e. x = 2 and y = 4 so x3 = 8 1 A1 2 or x3 = 6 x = 6 3 and y = 6 3 A1 (10) 2 dy dy d d2 y d2 y dy again: 6x + 6y + 3y2 2 3 3x 2 3 =0 dx dx dx dx dx dx (x = 2, y = 4) < 0 (2, 4) is maximum A1 check signs of y M1 dy 2x d2 y =0 = 2 dx x y2 dx 1 2 (x = 6 3 , y = 6 3 ) > 0 M1 1 2 ( 6 3 , 6 3 ) is minimum A1 (4) (14 marks) Alternative for last 4 marks y x Sketch from top left to bottom right M1 Min in 2nd quad, max in first quad M1 1 2 minimum at ( 6 3 , 6 3 ) maximum at (2, 4) 2 A1 A1 (4) EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME Question Number 5. (a) Scheme sin (cos x) = 0 cos x = 0 (, ...) x= or 2 2 so A is ( x = 0 y = sin (1) , (b) Marks (ignore others) , 0), C is ( , 0) 2 2 M1 A1 both B1 i.e. B is (0, sin (1)) dy = cos (cos x) sin x dx M1 dy x = 0 at B and = 0, B is a stationary point dx 0 A1 (3) (2) (c) For 0, sin cos x 0 for x [ 0, /2] sin (cos x) cos x; equality when x = Equation of BC is y = sin (1) x + sin (1) /2 2 convex line is below curve, sin (1) 1 2 attempt equation BC x sin (cos x) equality when x = 0, (d) A1 cso; B1 M1 A1 cso 2 B1 (both) (6) 2 2 = cos x d x sin x , =1 0 0 I<1 M1, A1 cso 2 2 1 sin (1) 1 x dx OR area of triangle = 2 2 sin (1), I > 4 sin (1) 0 M1, A1 cso (4) (15 marks) cso = correct solution only 3 EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME Question Number 6. (a) Scheme (3, 0) m1 = 3 n1 , m2 = 3 n2 and Marks n2 > n1 m2 > m1 M1 curves are symmetric and n1, n2 are both even M1 (b) so n1 + n2 = 12 n1 = 2, n2 = 10; or n1 = 4, n2 = 8 A1; A1 (4) (1 each extra solution) 3 Area = 2 0 m 2 m1 x n1 x n2 dx M1 3 x n1 1 x n2 1 = 2(m2 m1 ) x n1 1 n2 1 0 M1 A1 ft smallest area when m1 and m2 are closest M1 i.e. n1 = 4, n2 = 8, m1 = 34, m2 = 38 A1 8 35 39 4 = 23(3 3 ) 0 5 9 = 2 39 – 2 35 + = 2 [39 – 37 – 8 5 2 5 35 – 2 37 35] OR Use of correct limits M1 combine powers o3 that differ by 1 or less M1 16 37 – (c) Gradient same n1 x n1 1 n2 x n2 1 i.e. n1 = x n2 n1 n2 1 2 n1 = 2, n2 = 10 x8 = ( 12 )2 > 1 5 or 8 1 5 = 4 1 5 or x = 1 5 1 5 712 5 OR 35 A1 Equation based on dy/dx M1 single x M1 (8) 4 1 2 or x = and 35 n1 n2 OR x = (n2 n1) n1 = 4, n2 = 8 x4 = 8 5 8 1 5 < both cases 1 2 , greatest x = 12 1 4 A1 ft M1, A1 (5) (17 marks) ft = follow-through mark 4 EDEXCEL ADVANCED EXTENSION AWARD (9801) – JUNE 2002 PROVISIONAL MARK SCHEME Question Number 7. Scheme (a) pq = (b) x3 + p= 1 2 3 4 x i.e. x = 1 2 1 2 1 2 or q = 1 2 = 0 (x or x2 + 1 2 (line 3) 1 2 )(x2 + x + 1 = 0, 1 2 x + 1) = 0 identify; explain B1; B1 (2) attempt to divide M1 correct quadratic A1 discriminant = ( 12 )2 – 4 < 0 no real roots (so only root is x = (c) Marks x = is a root 3 + = 0, 1 2 M1 ) A1 cso i.e. = 1 – 2 ( 0) M1, A1 x 3 + x (x – )[x2 + x + 1] M1 [A1] Discriminant of x2 + x + 1 is 2 – 4 M1 x = is the only real root if 2 – 4 < 0, (4) i.e. < 2 () A1 cso (6) (d) Student’s method: x(x2 + ) = x = or x2 + = require M1 >0 2+1>0 = cvs 1 5 2 5 1 <<2 2 or 2 < < attempt cvs M1 2 correct cvs A1 5 1 2 A1, A1 (7) (19 marks) STYLE INSIGHT & REASONING (a) S marks For a novel or neat solution to any of questions 3—7. Apply once per question in up to 3 questions S2 if solution is fully correct in principle and accuracy S6 (S2 3) S1 if principle is sound but includes a minor algebraic or numerical slip T mark For a good and largely accurate attempt at the whole paper T1 (7 marks) () indicates final line given in the question paper; ft = follow-through mark; cso = correct solution only 5