Download lec12_Stability 2 - Purdue Engineering

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture12:StabilityII
Lecture12:StabilityII
• StabilityofHybridSystems
• SwitchingLinearSystems
• PiecewiseLinearSystems:
• globallyquadraticLyapunovfunction
• piecewisequadraticLyapunovfunction
LyapunovStability
Theorem1(Lyapunov StabilityTheorem) ConsiderahybridautomatonHwith
,anequilibriumpointand.Assumethatthere
existsanopensetwith
Letbeafunctioninxsuchthatforall:
Ifforallstartingatwhere,and
all,thesequenceisnon-increasing
(orempty),thenisastable equilibriumofH.
LyapunovStability
Sketchoftheidea
Example:SwitchingLinearSystem
stableswitching
Example:SwitchingLinearSystem
Sketchofproof:
x =0isanequilibrium:
ConsiderthecandidateLyapunovfunction:
Ineachdiscrete,thecontinuoussystemisstable!
Example:SwitchingLinearSystem
Testfornon-increasingsequencecondition:
LyapunovStability
• SuchV
iscalleda“Lyapunov-like”function.
• AdrawbackofthisTheoremisthatthesequence
mustbeevaluated whichmayrequireintegratingthe
continuousdynamics.
• Ingeneral,itishardtofindsuchV.
LyapunovStability
Theorem2(MoreRestrictiveLyapunovStabilityTheorem) Considerahybrid
automatonHwithanequilibriumpoint,and
Assumethatthereexistsanopensetwith
Letbeafunctioninxsuchthatforall:
Thenisastable equilibriumofH.
Proof:
Define
AndapplyTheorem1.
PiecewiseLinearSystems
Withthefollowingproperties:
PiecewiseLinearSystems
Theorem3 (GloballyQuadraticLyapunovFunction)
Ifthereexistssuchthat
ofisasymptoticallystable.
LinearMatrixInequality(LMI) condition!
LinearMatrixInequality(LMI)
Linearinequalities
Linearequalitiesandinequalities
PiecewiseLinearSystems
Proof (GloballyQuadraticLyapunovFunction)Firstnotethatthereexists
suchthat
withthegivenassumptionsthereexistsaunique,infinite,andnon-Zeno
executionforeveryinitialcondition.Thecontinuousevolutionsatisfiesthe
followingdifferentialequation:
whereisafunctions.t.for
Let
Thesystemresidesinone discretestateatatime.
PiecewiseLinearSystems
From,wehave
wherearethesmallestandlargesteigenvaluesofP
respectively.
goestozeroexponentiallyas,whichimpliesthatthe
equilibriumpointisasymptotically(actuallyexponentially) stable.
Example:PiecewiseLinearSystems
AsymptoticallySTABLE!
Example:PiecewiseLinearSystems
P doesnotexist!
Asymptoticallystable!
Theabovecondition
maybetoostrong?
PiecewisequadraticV
MATLAB:LMIToolbox
LyapunovStabilityTest
LMI
• RobustControlToolbox:LMIsolvers
• DetaileddescriptionsoftheLMItoolsareinLMIunderRobust
ControlToolbox inthe“Help”menu.
• Demo:lmidem
• GUI: lmiedit
• References
• S.Boyd,L.ElGhaoui,E.Feron,andV.Balakrishnan.“Linear
MatrixInequalitiesinSystemandControlTheory”.SIAM,
Philadelphia,1994.
PiecewiseLinearSystems
Withthefollowingproperties:
PiecewiseLinearSystems
Forstability,fromTheorem3
maybetoostrong!
Piecewisequadratic!!
hasnon-negativeelements.
unknowns
PiecewiseQuadraticLyapunovFunction
Theorem 4(PiecewiseQuadraticLyapunovFunction)Ifthereexist
suchthat
satisfies:
:continuousacrosstheboundary
:Positivedefinite
wherearenon-negative,theequilibriumpointisasymptotically
stable.
LMIproblem!
M.JohanssonandA.Rantzer.ComputationofpiecewisequadraticLyapunov
functionsforhybridsystems,IEEETr.AutomaticControl,1998
PiecewiseQuadraticLyapunovFunction
Ontheboundary
continuousacrosstheboundary
Example:PiecewiseLinearSystems
Example:PiecewiseLinearSystems
asymptoticallystable
Example:PiecewiseLinearSystems
asymptoticallystable
MATLAB:LMIToolbox
LyapunovStabilityTest(Theorem4)
LMI
• RobustControlToolbox:LMIsolvers
• DetaileddescriptionsoftheLMItoolsareinLMIunderRobust
ControlToolbox inthe“Help”menu.
•References
• S.Boyd,L.ElGhaoui,E.Feron,andV.Balakrishnan.“Linear
MatrixInequalitiesinSystemandControlTheory”.SIAM,
Philadelphia,1994.
Related documents