Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
JS-16 Inverse Trigonometric Functions We define inverse trigonometric functions. Suppose a≤1 and sin x = a then as we know there are infinite values of x satisfying this equation and which are which are given by x = n + (-1)n where is the numerically smallest angle (For instance if a = ½ then = /6) whose since is a. Then we write sin -1 a = n + (-1)n Thus SIN-1 a is multiple valued function taking infinite values for any a satisfying a≤1. We also note that is the numerically smallest angle whose sine is a i.e. a 1. 1 1 5 and if a , not , 2 6 2 6 6 Principal Values Of Inverse Functions: Recall basic properties of sin x we know that its domain is (-, ) and range is [-1, 1], but to attain does not have to run from - to . We easily notice from the graph of sin x that to attain all the values in [-1, 1], x has to run either from 2 to or from 2 3 3 5 to or from to and so on the most natural choice of which is to since 2 2 2 2 2 2 (i) sin x monotonically increasing in this interval (ii) Normal acute angles are covered. This particular is denoted by sin-1 a. Thus remember whose sine is a where a≤1.” , 2 2 “sin-1 a is the angle in To invert the equality y = sin x we sin-1 y = x provided y≤1 and x , otherwise we can 2 2 we proceed as , 2 2 not write it as sin-1 y = x. To invert the equality y = sin x when x follows We write sin x = sin x’ where x , which is always possible since any value in [-1, 1] is 2 2 through the function sin x. For instance suppose we want to , 2 2 3 invert y = sin x when x , then 2 2 attained by an angle in 359 2 x 3 2 3 x 2 2 2 x 2 Also sin x = sin( - x). whence it , 2 2 Therefore the given equality can be written as y = sin( - x) where x follows that sin-1 y = - x. A similar discussion 2. follows for other inverse trigonometric functions. Domain And Range Of Inverse Trigonometric Functions: Function domain rangeReason for choosing range sin-1 x [-1, 1] 2 , 2 Discussed cos-1 x [-1, 1] [0, ] Since cos x is MD in [0, ] and [0, ] covers acute angles. tan 1 x , , 2 2 Same as sin-1 x cot 1 x , (0, ) Same as cos-1 x sec 1 x , 1, 0, 2 2 , same as cos-1 x (/2 is not attained) cosec-1 x , 1, 2 , 0 0, 2 same as sin-1 x (0 is not attained) The following additional remarks on inverse functions will be useful. (i) sin-1 x is positive or negative according as x is positive or negative. Same is true for tan-1 x. (ii) cos-1 x 0 for all x within its domain (iii) cot-1 x > 0 for all x 360 (iv) sin-1 x, cos-1 x are continuous and differentiable in (-1, 1) (v) tan-1 x, cot-1 x are continuous and differentiable every where. (vi) sin-1 x, tan-1 x are monotonically increasing while cos-1 x, cot-1 x are decreasing in their respective domains. Results 1. 2. 3. 4. 5. (i) sin-1 x = cos ec 1 1 1 , x 0, x 1 (ii) cos-1 x = sec 1 , x 0, x x (iii) 1 cot 1 if x 0 x 1 tan x cot 1 1 if x 0 x (i) sin-1 (- x) = - sin-1 x, x 1 (ii) cos-1 (- x) = - cos-1 x, (iii) tan-1 (- x) = - tan-1 x for all x (i) sin(sin-1 x) = x, x 1 (ii) cos(cos-1 x) = x, x 1 (iii) tan(tan-1 x) = x for all x (i) sin-1(sin x) = 1 (ii) cos-1(cos x) = 2n - x if x 2n 1 , 2n = x – 2n if x 2n, 2n 1 n x 1 x n , x n x y , 1 xy (i) tan-1 x + tan-1 y = tan 1 (ii) tan-1 x + tan-1 y = tan 1 , n 2 x, y 0, x y , 1 xy x, y 0, 361 2 xy 1 xy 1 x 1 6. sin-1 x + cos-1 x = /2, x 1 tan-1 x + cot-1 x = /2, for all x sec-1 x + cosec-1 x = /2, x 1 1 1 2sin x if x 1, 2 1 1 2sin 1 x if x , 2 2 1 2sin 1 x if x ,1 2 7. sin 1 2 1 x 2 8. sin 1 ( x 1 y 2 y 1 x 2 ) , if x, y 0, x 2 y 2 1 sin 1 x sin 1 y sin 1 ( x 1 y 2 y 1 x 2 ) if x 0, y 0, x 2 y 2 1 1 2 2 if x , y [0,1] cos ( xy 1 x 1 y ), 9. 1 2 x 1 x 1 sin 1 x 2 2x 1 2 tan x sin 1 if x 1 1 x2 2x 1 sin 1 x 2 if x 1 Exercise 1. Find the principal values of each of the following : (i) tan 1 3 (ii) 1 cos 1 2 (iv) sec1 2 (v) 1 cot 1 3 (vii) 1 sin 1 2 (viii) cos ec 1 2 (iii) (vi) (ix) 362 sin 1 1 1 cos 1 2 tan 1 1 (x) 2 sec 1 3 1 2 1 2 2. Find the value of tan 1 1 cos 1 sin 1 3. Find the value of tan 1 3 sec1 2 4. Find the values of each of the following : 5. 6. (i) 1 tan 1 2 cos(2sin 1 ) 2 (iii) 3π tan 1 tan (iv) 4 (ii) 2π sin 1 sin 3 π 3 7π cos 1 cos 6 1 2 (v) sin sin 1 Prove the following identities in a proper domain. (i) sin 1 x cos1 1 x2 (ii) cos1 x sin 1 1 x2 (iii) x sin 1 x tan 1 2 1 x (iv) x tan 1 x sin 1 2 1 x (v) 1 x2 cos 1 x tan 1 x (vi) 2sin 1 x sin 1 2 x 1 x 2 (vii) 3a 2 x x3 x 3tan 1 tan 1 2 2 a a a 3x (viii) tan 1 x (ix) cos1 x 2sin 1 (xi) 1 x2 1 x2 tan 1 1 x 2 1 x 2 1 x 2 ab 1 1 1 x cos 1 , xε 0,1 2 1 x bc 1 ca 1 cot 1 cot 1 0 (x) cot 1 a b bc c a π 1 1 2 cos x 4 2 Prove the following: (i) 3 8 77 sin 1 sin 1 sin 1 5 17 85 (ii) sin 1 5 7 253 sin 1 cos 1 13 25 325 (iii) sin 1 1 π cot 1 3 4 5 (iv) cos 1 4 3 27 tan 1 tan 1 5 5 11 363 7. (v) 3 5 33 cos sin 1 sin 1 5 13 65 (vii) cos 1 (ix) tan 1 (xi) 1 1 1 1 π tan 1 tan 1 tan 1 tan 1 3 5 7 8 4 (xiii) 3 tan 1 (xv) 1 1 1 π 4 tan 1 tan 1 tan 1 5 70 99 4 (xvii) 2sin 1 cos 1 63 1 3 2 tan 1 sin 1 65 5 5 4 12 33 cos 1 cos 1 5 13 65 (viii) tan 1 1 2 1 3 tan 1 cos 1 4 9 2 5 1 1 2 tan 1 tan 1 7 13 9 (x) 1 1 1 π 2 tan 1 tan 1 2 tan 1 5 7 8 4 1 1 π 2 tan 1 tan 1 3 7 4 tan 1 m mn π tan 1 n mn 4 (xvi) sin 1 12 4 63 cos 1 tan 1 π 13 5 16 (xviii) 1 x2 π 1 2 x tan 1 tan 2 1 x 2 2x 1 1 1 π tan 1 tan 1 (xiv) 4 20 1985 4 3 24 tan 1 5 7 (xii) Write each of the following in the simplest form : (i) 2x sin 1 (ii) 2 1 x (iv) sin tan 1 x 2 cot 1 x 2 (vii) (x) (xii) 8. (vi) sin 1 3 x 4 x3 (iii) (v) cos 1 4 x3 3x sin 1 x 1 x x 1 x 2 (vi) cos x tan 1 1 sin x 2 x 1 cos x sin x 1 3 x x tan , x π (viii) (ix) tan 1 , x a tan 1 3x 2 2 2 cos x sin x a x 2 1 x 2 1 1 1 2 x 1 1 1 y 1 tan sin cos (xi) tan , x 0 2 2 x 1 x 2 1 y 2 tan 1 1 cos 3x 1 cos 3x (xiii) 1 x2 1 x2 1 tan (xiv) cot 2 2 1 x 1 x 1 Solve the equations : (i) sin 1 x cos 1 x. (iii) tan 1 ( x 1) tan 1 ( x 1) cot 1 2. (iv) (ii) 364 tan 1 x cot 1 x. cot 1 x cot 1 2 x 3 4 1 x2 x 9. (vi) cos 1 x sin 1 x cos 1 x 3 (viii) 2 cot 1 2 cos 1 (v) sin 1 x cos 1 x sin 1 (3x 2) (vii) tan-1(x + 1) + tan-1(x – 1) = tan-1 (ix) tan 1 x tan 1 (1 x) 2 tan 1 x x 2 . (x) cos 1 (xi) 2 2a 2x 1 1 1 b sin tan cos . (xii) 1 a2 1 x2 1 b2 x2 1 2x 4 cot tan 1 2 0. 2x x 1 3 (xiii) sin 1 1 x 2sin 1 x (xv) 2tan-1 (2x + 1) = cos-1 x 8 31 1 2 (xiv) 2 1 a2 1 1 b cos 2 tan 1 x 2 2 1 a 1 b 1 tan x cot x 1 2 cos 1 x sin 1 x (xvi) 3 cos ec 1 x 5 1 2 52 8 6 Prove that: sec 2 (tan 1 2) cos ec 2 (cot 1 3) 15 1 costan x 1 10. Prove that : (i) sin cot 11. If cos 1 12. If sin 1 x sin 1 y sin 1 z prove that x2 1 x2 2 x y x 2 2 xy y2 cos 1 prove that 2 cos 2 sin 2 . a b a ab b (i) x 1 x 2 y 1 y 2 z 1 z 2 2 xyz (ii) x 4 y 4 z 4 4x 2 y 2 z 2 2 x 2 y 2 y 2 z 2 z 2 x 2 13. Prove that 14. Prove that : 15. Prove that : (ii) x2 1 (ii) cos tan 1 sin cot 1 x 2 x 2 3 sin 2 1 1 tan 1 tan tan , where . 2 2 5 3 cos 2 4 a a 2b 1 1 tan cos 1 tan cos 1 b b a 4 2 4 2 (i) sin-1 x + sin-1 y = cos 1 1 x 2 1 y 2 xy if x, y 0, x2 + y2 1. sin-1 x + sin-1 y = sin 1 x 1 y 2 y 1 x 2 if xy > 0, x2 + y2 > 1. 365 (iii) 16. 17. if x 1 4 3 if x 1 4 1 x 1 x (iv) tan 1 x tan 1 (v) 2 tan 1 x sin 1 (vi) 1 2 2 x2 sin 1 2 2 2 2x 2x 1 1 x cos tan 1 if x 1 2 2 1 x 1 x 1 x2 sin 1 x 4 Prove the following numerical equalities (i) 1 63 1 sin sin 1 8 2 2 4 (ii) 1 2 2 1 sin sin 1 2 3 3 (iii) 3 sin sin 1 sin 1 5 (iv) sin 1 (v) sin-1 (sin 10) = 3 - 10 (vi) cos-1 (cos 20) = 20 - 6 (vii) 46 6 33 1 sin 1 sin cos cos 7 7 7 (viii) 4 tan 1 (x) tan 1 4 1 5 1 1 tan 1 5 239 4 (ix) cos 1 3 8 36 sin 1 sin 1 5 17 85 2 1 1 13 cos 1 cos 1 2 7 14 1 1 1 1 1 1 tan 1 tan 1 tan 1 (xi) cos 2 tan 1 sin 4 tan 1 3 5 7 8 4 7 3 Find the greatest and least value of (i) 18. 2 if x 0 1 1 1 tan x tan x if x 0 2 sin-1 x + cos-1 x + tan-1 x (ii) 1 x tan 1 ,0 x 1 1 x x cos 1 cos Reduce to its simplest form tan 1 cot 1 x sin x sin 366 ANSWERS 1. (i) (vii) 4 3 (ii) 3 (iii) 2 (iv) 3 4 (viii) 6 (ix) 4 (x) . 3 3. 4. (i) (vi) x 4 2 (vii) sin 1 (x) 1 tan 1 x 2 (xi) x y 1 xy (ii) (v) 3 sin 1 x (ix) 3 tan 1 x 18. 3 1 cos 1 x 2 2 1 (xv) 1 (iii) 2 (iv) 3 17 4 (vii) 1 4 (viii) (xii) (vi) 0, or (x) a b 1 ab (xi) ba 1 ab (xv) 0 (xvi) ½ (i) 3 , 4 4 (ii) ,0 4 1 2 (viii) 1 cot 1 x 2 2 x a (xiv) (i) (ii) 4 sin 1 x sin 1 x 2 tan 1 x 8. (iii) (iii) (i) 2 3 3 sin 1 x 7. (vi) (ii) 3 4 2 3 4 2. (xiii) (v) 19. (iii) tan 1 ( x 1) tan 1 ( x 1) tan 1 tan 1 25 , 24 3. (xiii) 1 2 ( x 1) ( x 1) 1 tan 1 2 1 x 1 2 tan 1 2 1 tan 1 2 x 2 x2 4 x 2 Both values satisfy given equation . 367 (iv) 4 1 x (xii) 3x 2 (v) 1, or (ix) 1 . 2 0 (xiv) x 2 SOLUTIONS 8. 2 3 1 2 -1 (iv) (x) If x 0 then the equation is tan 1 1 1 3 tan x 2 x 1 4 1 2 2x 2x2 3x 1 0 cos1 3x 1 2 x2 1 x 3 17 4 x can not be negative ) Put a tan , b tan then equation becomes cos1 cos 2 cos1 (cos 2 ) 2tan 1 x 11. 1 1 1 3 tan 1 x 2x 4 2 2 2tan 1 x x tan ( ) tan tan 1 tan tan a b . 1 ab x y x2 y2 x y . 1 2 1 2 cos . cos 1 Taking cosine of both sides a b a b a b x 2 y2 xy cos 1 2 1 2 which will lead to the desired result. ab a b 2 13. Put sin 1 x A,sin 1 y B ,sin 1 z C then we are given A B C We can show by conditional identities sin 2 A sin 2B sin 2C 4sin Asin B sin C 2sin A cos A sin B cos B 2sin C cos C 4 xyz 2 x 1 x 2 2 y 1 y 2 2 z 1 z 2 4 xy etc. The second result can be proved by noting that cos( A B) cos C cos A cos B sin A sin B cos C (1 x 2 )(1 y 2 ) x 2 y 2 2 xy 14. LHS tan 1 1 x 2 1 y 2 xy 1 z 2 1 x2 1 y 2 3sin 2 1 tan 5 3cos 2 4 3sin 2 tan 1 4(5 3cos 2 ) tan 1 368 1 z 2 etc. 12sin 2 tan (5 3cos 2 ) 20 12cos 2 3sin 2 tan Now expression under tan 1 15. 24 tan 5tan 5tan 3 3tan 3tan 3 20 20 tan 2 12 12 tan 2 6 tan 2 Take 1 a a cos1 then cos 2 b b 1 tan 1 tan 17. (i) 2 1 tan 1 tan 2 Put sin 1 Now cos 2 2 2 1 8 3 2 4 1 2 4 2 2 1 tan 2 1 tan 1 tan 2 2b 2 2 2 = = cos a 1 tan 2 1 tan 2 2 2 1 sin 4 2 tan 3 32 tan tan 2 tan 2 32 LHS tan tan 4 2 63 then . 8 Our target (ii) 24 tan 1 tan 2 5 tan 3tan . 2 1 tan 2 1 tan 2 12(1 tan ) 6 tan 2 20 1 tan 2 1 tan 2 1 cos 2 63 1 0, and sin 8 , cos 8 2 1 cos 2 2 2 ( Note that , belong to 0, ). 2 2 4 2 sin 4 1 3 4 2 1 2 2 2 2 2 2 Put sin 1 then ,0 and sin 3 3 2 Target sin 2 sin 2 1 cos 2 But sin 2 sin 2 . Also cos 1 sin 2 ,0 2 But | cos | sin 369 1 1 / 3 2 cos 1 8 1 9 3 (iii) Note that : sin 1 3 4 3 3 sin 1 sin 1 cos1 5 5 5 5 2 (iv) converting to tan 1 we get sin 2 (v) 45 32 36 tan 1 60 24 77 tan 1 1 3 3 8 4 15 tan 1 36 tan 24 77 1 4 15 3 8 36 Expression tan tan 1 tan 1 4 15 77 1 1 tan 1 77 77 cot 1 36 36 2 First Method : by hit and trial sin10 sin 3 10 and 2 3 10 2 Hence sin 1 sin10 3 10 Second Method : The general value of sin 1 sin10 n (1)n (10) sin (n (1)n (10) sin10 for all integers n The principal value must lie between If n is even n 2m then we get 10 2 2m 10 2 1.84 m 1.36 (*) There is no integer satisfying (*) 10 5 2 2 and 2 2 (2m 1) 10 3 5 1 m 4 4 5 2 2m 10 If n is odd n 2m 1 then 2 m 1 370 2 or n 3 10 2 n (1)n (10) 1 5 1 m 4 4 (2m 1) 10 2 1 10 1 2m 1 2 2 2 Hence principal value of sin 1 (sin10) 3 10 Or in short sin 1 (sin10) n (1)n (10) Test few initial values like n 2, 1, 0,1,2 etc . cos1 (cos20) 2n 20 For n 0 , (vi) 20 which is much out side 0, For n 1 we get 4 20 0, no matter whether we take sign or sign . (viii) A lay woman approach is much simpler sin 33 5 5 2 sin(4 ) = sin sin 7 7 7 7 Since 2 33 lies between and , sin 1 sin 7 7 2 2 Again cos 46 4 cos 6 7 7 cos1 cos 18. note that 6 20 0, 6 20 n3 For f ( x) (i) 2 46 4 7 7 2 7 4 cos 7 sum 6 7 tan 1 x , 1 x 1 Since f ( x) is strictly monotonic minimum and maximum values are 2 19. and 4 2 4 Expression tan 1 tan 1 ie 4 and 3 4 (ii) x cos x sin tan 1 1 x sin cos x cos 2 (1 x sin )( x sin ) (1 x sin )cos x( x sin )cos tan 1 sin ( x 2 1 2 x sin ) cos ( x 2 1 2 x sin ) show f ( x) is MD . = tan 1 tan 1 tan 1 tan 371 x cos x sin 1 sin cos x( x sin ) cos 1 (1 x sin ) cos ( x 2 1)sin 2 x sin 2 ( x 2 1)cos x sin 2 372