Download Chapter 16 - McMaster University > ECE

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
TWO-PORT NETWORKS
In many situations one is not interested in the internal organization of a
network. A description relating input and output variables may be sufficient
A two-port model is a description of a network that relates voltages and currents
at two pairs of terminals
LEARNING GOALS
Study the basic types of two-port models
Admittance parameters
Impedance parameters
Hybrid parameters
Transmission parameters
Understand how to convert one model into another
ADMITTANCE PARAMETERS
The network contains NO independent sources
The admittance parameters describe the currents in terms of the voltages
y21 determines the current
I1  y11V1  y12V2
The first subindex identifies
the output port. The second
the input port.
flowing into port 2 when the I 2  y21V1  y22V2
port is short - circuited and a
voltage is applied to port 1
The computation of the parameters follows directly from the definition
y11 
I1
V1 V
y12 
I2
V1 V
y22 
2 0
y21 
2 0
I1
V2 V 0
1
I2
V2 V 0
1
LEARNING EXAMPLE
Find the admittance parameters for the network
I1  y11V1  y12V2
I 2  y21V1  y22V2
Circuit used to determine y11, y21
 I2
Circuit used to determine y12 , y22
1
3
I1  (1  )V1  y11  [ S ]
2
2
1
1
1
 I2 
I1  I 2   V1  y21   [ S ]
1 2
2
2
5
 1 1
I 2    V2  y22  [ S ]
6
 2 3
3
3 5
1
 I1 
I2 
V2  y12  [ S ]
23
5 6
2
Next we show one use of this model
An application of the admittance parameters
Determine the current through the
4 Ohm resistor
I1  y11V1  y12V2
I 2  y21V1  y22V2
3
1
I1  V1  V2
2
2
1
5
I 2   V1  V2
2
6
1
I


V2
I1  2 A, V2  4 I 2 2
4
The model plus the conditions at the
ports are sufficient to determine the
other variables.
3
1
2  V1  V2
2
2
1
5 1
0   V1    V2
2
6 4
13
V2
6
8
V2  [V ]
11
2
I 2   [ A]
11
V1 
IMPEDANCE PARAMETERS
The network contains NO independent sources
V1  z11I1  z12 I 2
V2  z21I1  z22 I 2
The ‘z parameters’ can be derived in a manner similar to the Y parameters
z11 
V1
I1 I
z12 
V1
I2
z21 
2 0
V2
I1
z22 
I1 0
I 2 0
V2
I2
I1 0
LEARNING EXAMPLE
Find the Z parameters
V1  z11I1  z12 I 2
V2  z21I1  z22 I 2
z11 
z12 
Write the loop equations
V1  2 I1  j 4( I1  I 2 )
V1
I1 I
V1
I2
z21 
2 0
z22 
I1 0
V2  j 2 I 2  j 4( I 2  I1 )
rearranging
V1  (2  j 4) I1  j 4 I 2
V2   j 4 I1  j 2 I 2
 z11  2  j 4 
z12   j 4
z21   j 4
z22   j 2
V2
I1
I 2 0
V2
I2
I1 0
LEARNING EXAMPLE
Use the Z parameters to find the current through the 4 Ohm
resistor
V1  z11I1  z12 I 2
V2  z21I1  z22 I 2
Output port constraint
V2  4I 2
Input port constraint
V1  120  (1) I1
V1  (2  j 4) I1  j 4 I 2
V2   j 4 I1  j 2 I 2
0   j 4 I1  (4  j 2) I 2
 (3  j 4)
12  (3  j 4) I1  j 4 I 2
 j4
48 j  (16  (4  j 2)(3  j 4)) I 2
 I 2  1.61137.73
HYBRID PARAMETERS
The network contains NO independent sources
V1  h11 I1  h12V2
I 2  h21 I1  h22V2
h11 
V1
I1 V
h21 
V1
V2
h22 
2 0
h12 
I1 0
I2
I1 V
h11  short - circuit input impedance
I2
V2
h21  short - circuit forward current gain
2 0
I1  0
h12  open - circuit reverse voltage gain
h22  open - circuit output admittance
These parameters are very common in modeling transistors
LEARNING EXAMPLE
I1
Find the hybrid parameters for the network
I2

V1

V2


V1  h11 I1  h12V2
I 2  h21 I1  h22V2
I2
I1

V1


V1
I2
V2  0
V1  (12  (6 || 3)) I1  h11  14
6
2
I2  
I1  h21  
3 6
3
I1  0


V2

V1 
6
2
V2  h12 
3 6
3
I2 
V2
1
 h22  [ S ]
9
9
TRANSMISSION PARAMETERS ABCD parameters
The network contains NO independent sources
V1  AV2  BI 2
I1  CV2  DI 2
A
V1
V2
B
C
I 2 0
V1
I2 V
2 0
I1
V2
D
A  open circuit voltage ratio
I 2 0
B  negative short - circuit transfer impedance
I1
I2 V
2 0
C  open - circuit transfer admittance
D  negative short - circuit current ratio
LEARNING EXAMPLE
Determine the transmission parameters
V1  AV2  BI 2
I1  CV2  DI 2
A
V1
V2
B
C
I 2 0
V1
I2 V
2 0
when I 2  0
1
j
V2 
V  A  1  j
1 1
1
j
V2 
1
I
I1  1  j
j
V2
when V2  0
1
1
j
I2  
I1  
I1
1
1  j
1
j
I1
V2
D
I 2 0
I1
I2 V
2 0
 D  1  j

 2  j 
1 
 (1  j )I 2
V1  1  (1 ||
) I1  

j 

 1  j 
B  2  j
PARAMETER CONVERSIONS
If all parameters exist, they can be related by conventional algebraic manipulations.
As an example consider the relationship between Z and Y parameters
V1  z11 I1  z12 I 2
V2  z21 I1  z22 I 2
V1   z11
V    z
 2   21
 y11
y
 21
1
z12   I1   I1   z11
 



z22   I 2   I 2   z21
y12   z11


y22   z21
z12 
z22 
1
1

Z
z12  V1   y11

z22  V2   y21
y12  V1 
y22  V2 
 z22  z12 
 z

 21 z11 
with  Z  z11z22  z21z12
In the following conversion table, the symbol  stands for the determinant of the
corresponding matrix
Z 
z11
z21
z12
y
, Y  11
z22
y21
y12
h
h
A B
,  H  11 12 , T 
y22
h21 h22
C D
INTERCONNECTION OF TWO-PORTS
Interconnections permit the description of complex systems in terms of simpler
components or subsystems
The basic interconnections to be considered are: parallel, series and cascade
PARALLEL: Voltages are the same.
Current of interconnection
is the sum of currents
The rules used to derive models
for interconnection assume that
each subsystem behaves in the
same manner before and after
the interconnection
SERIES: Currents are the same.
Voltage of interconnection is the sum
of voltages
CASCADE:
Output of first subsystem
acts as input for the
second
Parallel Interconnection: Description Using Y Parameters
Interconne ction
descriptio n
 I1   y11
I    y
 2   21
I  YV
y12  V1 
y22  V2 
In a similar manner
 I1a 
V1a 
 y11a y12a 
I a   ,Va   ,Ya  
  I a  YaVa
I b  YbVb
I
V
y
y
 2a 
 2a 
 21a
22b 
Interconnection constraints :
 I  I a  I b  I  YaVa  YbVb  (Ya  Yb )V
I1  I1a  I1b , I 2  I 2a  I 2b

V  Va  Vb
V1  V1a  V1b , V2  V2a  V2b
Y  Ya  Yb
Series interconnection using Z parameters
SERIES: Currents are the same.
Voltage of interconnection is the sum
of voltages
Description of each subsystem
Va  Z a I a , Vb  Z b I b
Interconnection constraints
Ia  Ib  I
 V  Za I  Zb I  ( Za  Zb ) I
V  Va  Vb
Z  Za  Zb
Cascade connection using transmission parameters
CASCADE:
Output of first subsystem
acts as input for the
second
Interconnection constraints:
I 2 a   I1b
V2 a  V1b
V1  V1a
V2  V2 b
I1  I1a
I 2  I 2b
V1  AV2  BI 2
V1a   Aa
 I   C
 1a   a
Ba   V2a 
Da   I 2a 
V1b   Ab
 I   C
 1b   b
Bb   V2b 
Db   I 2b 
V1   Aa
 I   C
 1  a
I1  CV2  DI 2
V1   A
 I   C
 1 
B   V2 
D   I 2 
Matrix multiplication does not commute.
Order of the interconnection is important
Ba   Ab
Da  Cb
Bb   V2 
Db   I 2 
Find the Y parameters for the network
LEARNING EXAMPLE
 j2
I1

V1



V2
V1  V2   j 2 I1
I 2   I1

I1

V1
I2
y11a
1
1
 j , y12 a   j
2
2
y21a   j
1
, y22 a
2
1
1 
 3
1

j


j


 5
2
5
2

 [S]
1 Y 

1
1
2
1
 j


   j 

j
2
  5
2
5
2 
I2
1
2
1

V2

V1  2 I1  I 2
V2  I1  3I 2
1
2 1
1  3  1
Yb  
  5  1 2 
1
3




LEARNING EXAMPLE
Find the Z parameters of the network
Network A
Use direct method,
or given the Y parameters transform to Z
… or decompose the network in a series
connection of simpler networks
2  2 j
3  2 j
Za  
 2
 3  2 j
2 
3 2 j
2  4 j 
3  2 j 
1 1
Zb  

1 1
5  4 j
3  2 j
Z  Za  Zb  
5  2 j
 3  2 j
Network B
5 2 j
3 2 j
5  6 j 
3  2 j 
LEARNING EXAMPLE
Find the transmission parameters
By splitting the 2-Ohm resistor,
the network can be viewed as the
cascade connection of two identical
networks
 A B  1  j
C D    j

 
2  j  1  j
1  j   j
 A B  1  j
C D    j

 
2  j 
1  j 
2  j 
1  j 
(1  j )(2  j )  (2  j )(1  j )
 A B   (1  j ) 2  (2  j ) j


C D  
2
j (2  j )  (1  j )

  j (1  j )  (1  j )( j )

 A B  1  4 j  2 2
C D   
2

  2 j  2
4  6 j  2 2 

1  4 j  2 2 
Two-Ports