Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TOPIC : 2.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC : 2.1 Introduction to Trigonometric Functions LEARNING OUTCOMES a) recognize the graphs of y = sin x, y = cos x and y = tan x b) recognize the graphs of y = a sin bx, y = a cos bx and y = a tan bx. c) understand the relationship between graphs of sin x and cos x. • define trigonometric ratios sin • understand tan θ = , cos o sin (90 – θ) = cos θ , cos (90o – θ) = sin θ and tan (90o – θ) = cot θ • Use of some special angles • evaluate trigonometric functions for any angle Definition Periodic Function A function which graph consists of a basic pattern, which repeats at regular interval. The width of the basic pattern is the period of the function. The value of sin , cos and tan will be repeated after one period, the period of sin and cos is 2 rad and tan is rad. So, the sine, cosine and tangent functions are known as periodic functions Graph y = sin(x) Graph y = sin (x) Period : 2 Range : [ -1, 1 ] Domain : , sin(-x) = - sin(x) x -2 y=sin(x) 0 3 2 1 - 2 0 -1 0 2 3 2 2 0 1 0 -1 0 Graph y = cos(x) y 1 x 0 -1 y Graph y = cos (x) 1 Period : 2 Range : [ -1, 1 ] Domain : , Cos (-x) = cos (x) Graph of cos(x) is symmetry at y-axis x 0 -1 X y= cos (x) 3 -2 2 - 2 1 0 -1 0 0 2 3 2 2 1 0 -1 0 1 Graph y = tan(x) Graph y = tan (x) Period : Range : , n Domain : { \ ; nis odd int egers} 2 tan(-x) = - tan (x) x 2 4 y= tan (x) -1 0 4 2 0 1 GRAPH y = a sin bx y = a cos bx y = a tan bx. y sin a sinbx y asin xx a 00 y a 1 0 1a 2 2b2 2b 3 22b 24 2b x y a sin bx a 0 y a 2b y a sin bx a 0 3 2b 5 2b x 0 a 2 2b 4 2b y cos y cos x x a 0 aacos bx a 0 y a1 4 2b 3 2b 0 2 2b 2b a1 22b 2 33 2b 22b 4 2 2b x y a cos bx a 0 y y a cos bx a0 a 4 2b 3 2b 2 2b 0 2b a 2b 2 2b 3 2b 4 2b x y 3 cos 2 x Example 1 a3 b2 y 3 3 4 2 2 0 4 4 3 3 4 x y 2 cos 3x Example 2 a 2 b 3 y 2 2 3 2 3 0 6 2 6 3 2 2 3 x Example 3 3 y 3 sin x 2 3 a 3 b 2 y 2b 3 3 0 3 5 3 3 2 3 4 3 x y y a tan bx ax 0 y tan y a 2 42b 4b4 a 44b 2 x 42b y a tan bx a 0 Exercise Sketch the graph of the following trigonometric functions: 1) y sin 1 x 2 1 2) y cos x 2 3) y sin x 3 4) y sin x 2 The relationship between graphs of sin x & cos x Graph one full period of sin x and cos x y y = -sin x 1 π/2 π 3π/2 2π x –1 y = cos x Shift to the right y = sin x rad o – θ) = cos θ sin (90 2 TRIGONOMETRY RATIO For any acute angle θ, there are six trigonometry ratios, each of which is define by referring to a right angle triangle containing θ. y r θ 90o - θ y x x From the diagram r θ 90o - θ y x y opposite sin θ = hypotenuse = adjacent cos θ tan θ = hypotenuse adjacent r x = r y opposite = x = x cosec θ 1 = sec θ = cot θ = sin θ 1 cos θ 1 tan θ r = y = r x = x y Complimentary Angle x = • sin (90o-θ) r = cos θ = sin θ = cot θ y • cos (90o-θ) = r x = • tan (90o-θ) y y • cot (90o-θ) = tan θ r 90o - θ y θ x x Trigonometric Ratios for Special Angle 45o 30o 2 1 2 3 45o 1 60o 1 θo 0o 30o 45o 60o 90o θ rad sin θ cos θ tan θ 0 rad 0 1 0 rad 6 rad 4 rad 3 rad 2 1 2 3 2 1 1 1 2 3 2 2 1 2 1 0 3 1 3 undefined Type of Angle Acute angle Right angle Obtuse Angle Reflex angle 0o < θ < 90o θ = 90o 90o < θ < 180o 180o < θ < 360o Positive and Negative Angles y sin (-θ) = - sin θ A S cos (-θ) = cos θ θ x tan (-θ) = - tan θ -θ T C Basic Angle (α) All positive Sine positive II θ I θ α =180o - θ α=θ- 180o α=θ α α α α =360o - θ III IV θ Tangent positive Cosine positive Example 1 If sin θ = 3 5 and θ is acute angle, find cos θ, tan θ, cosec θ, sec θ, and cot θ Solution Hence, cos θ = tan θ = 5 3 θ 4 4 5 3 4 cosec θ = cot θ = sec θ = 3 5 4 3 5 4 Example 2 If tan θ = 1 and θ is in the fourth quadrant 2 find the sec θ and cosec θ Solution Hence 2 sec θ = θ 1 3 cosec θ = 1 cos 1 3 sin 3 2 Example 3 Evaluate the following without using calculator (a) sin 210º = - sin (210o -180o) = - sin 30o = 1 2 b) cos 120º = - cos (180o – 120o) = - cos 60o = c) tan 240º 1 2 = tan (240o – 180o) = tan 60o = 3 d) cos (- 225º) = - cos ( 225o – 180o) = - cos 45o = e) cot (-300º) 1 2 = cot 60o = 1 tan 60 = 1 3 CONCLUSION 1. The graphs of y = a sin bx y = a cos bx y = a tan bx. 2. The relationship between graphs of sin x & cos x 3. Define trigonometric ratios and understand sin tan θ = , cos sin (90o – θ) = cos θ , cos (90o – θ) = sin θ and tan (90o – θ) = cot θ 4. Use of some special angles 5. Evaluate trigonometric functions for any angle