Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TOPIC :
2.0 TRIGONOMETRIC FUNCTIONS
SUBTOPIC :
2.1 Introduction to Trigonometric
Functions
LEARNING OUTCOMES
a) recognize the graphs of y = sin x,
y = cos x and y = tan x
b) recognize the graphs of y = a sin bx,
y = a cos bx and y = a tan bx.
c) understand the relationship between
graphs of sin x and cos x.
• define trigonometric ratios
sin
• understand tan θ =
,
cos
o
sin (90 – θ) = cos θ ,
cos (90o – θ) = sin θ and
tan (90o – θ) = cot θ
• Use of some special angles
• evaluate trigonometric
functions for any angle
Definition
Periodic Function
A function which graph consists
of a basic pattern, which repeats
at regular interval. The width of
the basic pattern is the period of
the function.
The value of sin , cos and tan will be
repeated after one period,
the period of sin and cos is 2 rad
and tan is rad.
So, the sine, cosine and tangent
functions are known as periodic
functions
Graph y = sin(x)
Graph y = sin (x)
Period
: 2
Range : [ -1, 1 ]
Domain : ,
sin(-x) = - sin(x)
x
-2
y=sin(x) 0
3
2
1
-
2
0
-1
0
2
3
2
2
0
1
0
-1
0
Graph y = cos(x)
y
1
x
0
-1
y
Graph y = cos (x)
1
Period
: 2
Range : [ -1, 1 ]
Domain : ,
Cos (-x) = cos (x)
Graph of cos(x) is symmetry at y-axis
x
0
-1
X
y=
cos (x)
3
-2 2
-
2
1
0
-1
0
0
2
3
2
2
1
0
-1
0
1
Graph y = tan(x)
Graph y = tan (x)
Period :
Range : ,
n
Domain : { \
; nis odd int egers}
2
tan(-x) = - tan (x)
x
2
4
y=
tan (x)
-1
0
4
2
0
1
GRAPH
y = a sin bx
y = a cos bx
y = a tan bx.
y
sin
a
sinbx
y
asin
xx a
00
y
a
1
0
1a
2
2b2 2b
3
22b
24
2b
x
y a sin bx a 0
y
a
2b
y a sin bx a 0
3
2b
5
2b
x
0
a
2
2b
4
2b
y
cos
y
cos
x x
a
0
aacos
bx
a
0
y
a1
4
2b
3
2b
0
2
2b
2b
a1
22b
2 33
2b 22b
4
2
2b
x
y a cos bx a 0
y
y a cos bx
a0
a
4
2b
3
2b
2
2b
0
2b
a
2b
2
2b
3
2b
4
2b
x
y 3 cos 2 x
Example 1
a3 b2
y
3
3
4
2
2
0
4
4
3
3
4
x
y 2 cos 3x
Example 2
a 2 b 3
y
2
2
3
2
3
0
6
2
6
3
2
2
3
x
Example 3
3
y 3 sin x
2
3
a 3 b
2
y
2b 3
3
0
3
5
3
3
2
3
4
3
x
y
y
a tan
bx ax 0
y
tan
y
a
2
42b
4b4
a
44b
2 x
42b
y a tan bx a 0
Exercise
Sketch the graph of the following
trigonometric functions:
1) y sin 1 x
2
1
2) y cos x
2
3) y sin x
3
4) y sin x
2
The relationship between
graphs of
sin x
&
cos x
Graph one full period of sin x
and cos x
y
y = -sin x
1
π/2
π
3π/2
2π
x
–1
y = cos x
Shift to the right
y = sin x
rad
o – θ) = cos θ
sin
(90
2
TRIGONOMETRY RATIO
For any acute angle θ, there are six
trigonometry ratios, each of which is define by
referring to a right angle triangle containing θ.
y
r
θ
90o - θ
y
x
x
From the diagram
r
θ
90o - θ
y
x
y
opposite
sin θ
=
hypotenuse
=
adjacent
cos θ
tan θ
=
hypotenuse
adjacent
r
x
=
r
y
opposite
=
x
=
x
cosec θ
1
=
sec θ
=
cot θ
=
sin θ
1
cos θ
1
tan θ
r
=
y
=
r
x
=
x
y
Complimentary Angle
x
=
• sin (90o-θ)
r
=
cos θ
=
sin θ
=
cot θ
y
• cos (90o-θ)
=
r
x
=
• tan (90o-θ)
y
y
• cot (90o-θ) = tan θ
r
90o - θ
y
θ
x
x
Trigonometric Ratios for Special Angle
45o
30o
2
1
2
3
45o
1
60o
1
θo
0o
30o
45o
60o
90o
θ rad
sin θ
cos θ
tan θ
0 rad
0
1
0
rad
6
rad
4
rad
3
rad
2
1
2
3
2
1
1
1
2
3
2
2
1
2
1
0
3
1
3
undefined
Type of Angle
Acute angle
Right angle
Obtuse Angle
Reflex angle
0o < θ < 90o
θ = 90o
90o < θ < 180o
180o < θ < 360o
Positive and Negative Angles
y
sin (-θ) = - sin θ
A
S
cos (-θ) = cos θ
θ
x
tan (-θ) = - tan θ
-θ
T
C
Basic Angle (α)
All positive
Sine positive
II
θ
I
θ
α =180o - θ
α=θ-
180o
α=θ
α
α
α
α =360o - θ
III
IV
θ
Tangent positive
Cosine positive
Example 1
If sin θ =
3
5
and θ is acute angle, find
cos θ, tan θ, cosec θ, sec θ, and cot θ
Solution
Hence,
cos θ =
tan θ =
5
3
θ
4
4
5
3
4
cosec θ =
cot θ =
sec θ =
3
5
4
3
5
4
Example 2
If tan θ =
1
and θ is in the fourth quadrant
2
find the sec θ and cosec θ
Solution
Hence
2
sec θ =
θ
1
3
cosec θ =
1
cos
1
3
sin
3
2
Example 3
Evaluate the following without using calculator
(a) sin 210º
= - sin (210o -180o)
= - sin 30o
=
1
2
b) cos 120º
= - cos (180o – 120o)
= - cos 60o
=
c) tan 240º
1
2
= tan (240o – 180o)
= tan 60o
=
3
d) cos (- 225º)
= - cos ( 225o – 180o)
= - cos 45o
=
e) cot (-300º)
1
2
=
cot 60o
=
1
tan 60
=
1
3
CONCLUSION
1.
The graphs of
y = a sin bx
y = a cos bx
y = a tan bx.
2. The relationship between graphs of sin x & cos x
3. Define trigonometric ratios and understand
sin
tan θ =
,
cos
sin (90o – θ) = cos θ ,
cos (90o – θ) = sin θ and
tan (90o – θ) = cot θ
4. Use of some special angles
5. Evaluate trigonometric functions for
any angle