Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics 4250 Midterm 2 with solutions Instructor: Hakima Bessaih March 29, 2007 Partial credit will be awarded for your answers, so it is to your advantage to explain your reasoning and what theorems you are using when you write your solutions. Please answer the questions in the space provided and show your computations. Good luck! 1 2 3 4 5 6 Total Name: 1 I. Let f (x, y) = 24xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1 0 otherwise 1. Show that f (x, y) is a joint probability density function. 2. Find E[X]. 3. Find E[Y ]. Solution: 1. We must show that Z ∞ Z R∞ R∞ −∞ −∞ ∞ f (x, y)dxdy = 1. Z 1 Z 1−y 1 Z −∞ 24xydxdy = 0 0 Z Z 1 2 12y(1 − y) dy = = 12x2 y|01−y dy f (x, y)dxdy = −∞ 0 1 12(y − 2y 2 + y 3 )dy 0 0 2 3 = 12(1/2y − 2/3y + 1/4y 4 )|10 = 12(1/2 − 2/3 + 1/4) = 1. 2. ∞ Z E[X] = 1 Z xfX (x)dx = 1−x Z x −∞ Z 1 24xydydx 0 0 12x2 (1 − x)2 dx = Z0 1 2 Z 2 1 (12x2 − 24x3 + 12x4 )dx 12x (1 − 2x + x )dx = = 0 0 = (4x3 − 6x4 + 12/5x5 )|10 = 2/5 3. Z ∞ E[Y ] = 1 Z yfY (y)dy = −∞ Z 1 Z 1−y 24xydxdy y 0 0 12y 2 (1 − y)2 dy = Z0 1 2 2 Z 12y (1 − 2y + y )dy = = 0 1 (12y 2 − 24y 3 + 12y 4 )dy 0 3 4 = (4y − 6y + 12/5y 5 )|10 = 2/5 PS: for (3), we could have found directly that E[Y ] = 2/5 by symmetry of f . 2 II. The joint density function of X and Y is x + y 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 f (x, y) = 0 otherwise 1. Are X and Y independent? 2. Find P (X + Y < 1). Solution: 1. For 0 < x < 1 Z ∞ 1 Z (x + y)dy f (x, y)dy = fX (x) = −∞ 0 = (xy + y 2 /2)|10 = x + 1/2. And for 0 < y < 1 Z ∞ 1 Z f (x, y)dx = fY (y) = −∞ 2 (x + y)dx 0 = (x /2 + xy)|10 = y + 1/2. Hence fX (x) · fY (y) = (x + 1/2)(y + 1/2) 6= (x + y) = f (x, y). Thus, X and Y are not independent. 2. Let C = (x, y) ∈ (0, 1)2 , x + y < 1 = {(x, y), 0 < x < 1, 0 < y < 1 − x} . Z 1 Z 1−x P {X + Y < 1} = P {(X, Y ) ∈ C} = (x + y)dydx 0 0 Z 1 = [x(1 − x) + (1 − x)2 /2]dx = 1/3. 0 3 III. Assume X and Y are independent exponential random variables with common parameter λ. 1. Find the probability density function of Z = X + Y . 2. Find P (Y < t|X + Y > s), for some s > 0 and t > 0. Solution: 1. λe−λx x≥0 0 otherwise λe−λy y≥0 0 otherwise fX (x) = and fY (y) = Since X are Y are independent, the joint density function of X and Y is given by their product 2 −λ(x+y) λe x ≥ 0, y ≥ 0 fX,Y (x, y) = 0 otherwise Let C = {(x, y), x ≥ 0, y ≥ 0, x + y ≤ a} = {(x, y), 0 ≤ x ≤ a − y, 0 ≤ y ≤ a} . For a > 0 FX+Y (a) = P (X + Y ≤ a) = P [(X, Y ) ∈ C] Z Z Z Z 2 fX,Y (x, y)dxdy = λ e−λ(x+y) dxdy = C Z Ca Z a−y = λ2 e−λx e−λy dxdy = 1 − e−λa (1 + λa). 0 0 Hence a > 0 d FX+Y (a) da d = 1 − e−λa (1 + λa) da = λ2 ae−λa fX+Y (a) = Hence fX+Y (a) = λ2 ae−λa a≥0 0 otherwise 4 2. P (Y < t, X + Y > s) P (X + Y > s) P [(X, Y ) ∈ C1 ] = P [(X, Y ) ∈ C2 ] P (Y < t|X + Y > s) = Where C1 = {(x, y), x ≥ 0, y ≥ 0, y < t, x + y > s} = {(x, y), 0 < y < t, x > s − y} . C2 = {(x, y), x ≥ 0, y ≥ 0, x + y > s} = {(x, y), 0 < y, x > s − y} . P [(X, Y ) ∈ C1 ] = λ 2 ∞ Z tZ e−λ(x+y) dxdy 0 s−y −λs = λte . and P [(X, Y ) ∈ C2 ] = λ 2 Z 0 ∞ Z ∞ e−λ(x+y) dxdy s−y = λ. Hence P (Y < t|X + Y > s) = te−λs . 5 VI. If X and Y are independent and identically distributed uniform random variables on (0, 1), compute the joint density of U = Y − X and Y . Solution: Let fX (x) and fY (y) the associated densities of respectively X and Y . 1 0≤x≤1 0 otherwise 1 0≤y≤1 0 otherwise fX (x) = fY (y) = Then using the independence of X and Y , we have that the joint density function of X and Y is given by f (x, y) = 1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise Let g1 (x, y) = y − x and g2 (x, y) = y Hence the Jacobian of g1 and g2 : Jac(g1 , g2 ) = −1. On the other side if we let u = y − x and y = y then 0 < x < 1, 0 < y < 1 implies that −1 < u < 1, 0 < y < 1. Hence using the formula for the change of variables we get that fU,Y (u, y) = fX,Y (x, y) · |jac(g1 , g2 )|−1 . Hence fU,Y (u, y) = 1 −1 ≤ u ≤ 1, 0 ≤ y ≤ 1 0 otherwise 6 V. The joint probability mass function of the random variable X, Y , Z is given by 1 p(1, 2, 3) = p(2, 2, 1) = p(2, 3, 2) = . 3 1. Find E[XY Z]. Solution: E[XY Z] = X xyzp(x, y, z) x,y,z 1 (1 · 2 · 3 + 2 · 2 · 1 + 2 · 3 · 2) 3 1 (6 + 4 + 12) = 22/3. = 3 = 7 VI. (Bonus) If X1 , X2 , X3 , X4 and X5 are independent and identically distributed exponential random variables with the parameter λ, compute 1. P (min(X1 , . . . , X5 ) ≤ a). 2. P (max(X1 , . . . , X5 ) ≤ a) Solution: Since the Xi ’s are exponential random variables with parameter λ P (Xi > a) = e−λa i = 1, . . . , 5. and P (Xi ≤ a) = 1 − e−λa i = 1, . . . , 5. 1. We know that Xi ≥ min(X1 , . . . , X5 ) i = 1, . . . , 5. On the other hand P (min(X1 , . . . , X5 ) ≤ a) = 1 − P (min(X1 , . . . , X5 ) > a) = 1 − P (X1 > a, . . . , X5 > a) 5 5 Y Y = 1− P (Xi > a) = 1 − e−λa i=1 −5λa i=1 = 1−e 2. We know that Xi ≤ max(X1 , . . . , X5 ) i = 1, . . . , 5. Hence P (max(X1 , . . . , X5 ) ≤ a) = P (X1 ≤ a, . . . , X5 ≤ a) 5 5 Y Y = P (Xi ≤ a) = (1 − e−λa ) i=1 i=1 −λa 5 = (1 − e 8 )