Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Financial Risk Management Zvi Wiener [email protected] 02-588-3049 RM http://pluto.mscc.huji.ac.il/~mswiener/zvi.html HUJI-03 Financial Risk Management Following P. Jorion, Value at Risk, McGraw-Hill Chapter 4 Measuring Financial Risk RM http://pluto.mscc.huji.ac.il/~mswiener/zvi.html HUJI-03 Risks Measures Duration bonds, futures, fixed income Convexity bonds Beta diversified portfolio Sigma FX, undiversified portfolio Delta options Gamma options Risk is measured by short term volatility Zvi Wiener VaR-PJorion-Ch 4-6 slide 3 Basic Statistics Certainty and uncertainty Probabilities, distribution, PDF, CDF Mean, variance Multivariable distributions Covariance, correlation, beta Quantile Zvi Wiener VaR-PJorion-Ch 4-6 slide 4 A 100 km. B 100 km/hr 50 km/hr 1 – 100 2 – 50 3 – 50 (100+50+50)/3 = 66.67 km/hr. Zvi Wiener VaR-PJorion-Ch 4-6 slide 5 1. -2% 1. +40% 2. +1% 2. +10% 3. -1% 3. -50% 4. +1% 4. +20% 0.98*1.01*0.99*1.01 = 0.9897 Zvi Wiener 1.4*1.1*0.5*1.2 = 0.924 VaR-PJorion-Ch 4-6 slide 6 Probabilities Certainty Uncertainty Probabilities Zvi Wiener VaR-PJorion-Ch 4-6 slide 7 Probabilities Mean Variance Zvi Wiener VaR-PJorion-Ch 4-6 slide 8 Probabilities 0.3 30% 30% 0.2 0.1 10% 10% 20% 1 2 3 4 p i 5 1 i Zvi Wiener VaR-PJorion-Ch 4-6 slide 9 Probabilities 0.3 0.2 0.1 1 2 3 4 5 dp 1 0 Zvi Wiener VaR-PJorion-Ch 4-6 slide 10 Probabilities N mean X X i pi i 1 N Variance ( X ) ( X X i ) pi 2 2 i 1 Zvi Wiener VaR-PJorion-Ch 4-6 slide 11 Probabilities mean X Xdp Variance ( X ) ( X X ) dp 2 2 Variance ( X ) Zvi Wiener VaR-PJorion-Ch 4-6 slide 12 Sample Estimates 1 ˆ X N N X i 1 i N 1 ˆ ˆ ( X ) X Xi N 1 i 1 2 2 Sometimes one can use weights Zvi Wiener VaR-PJorion-Ch 4-6 slide 13 Normal Distribution N(, ) Zvi Wiener VaR-PJorion-Ch 4-6 slide 14 Normal Distribution N(, ) Zvi Wiener VaR-PJorion-Ch 4-6 slide 15 Normal Distribution 1% quantile Zvi Wiener VaR-PJorion-Ch 4-6 slide 16 Lognormal Distribution 0.6 0.5 0.4 0.3 0.2 0.1 1 Zvi Wiener 2 VaR-PJorion-Ch 4-6 3 4 slide 17 Covariance Shows how two random variables are connected For example: independent move together move in opposite directions covariance(X,Y) = Zvi Wiener E X X Y Y VaR-PJorion-Ch 4-6 slide 18 Correlation XY E X X Y Y ( X ) (Y ) -1 1 =0 independent =1 perfectly positively correlated = -1 perfectly negatively correlated Zvi Wiener VaR-PJorion-Ch 4-6 slide 19 Properties E (A B) E ( A) E ( B) (A B) 2 ( A) ( B) 2Cov( A, B) 2 2 2 2 (A B) 2 ( A) ( B) 2( A) ( B) 2 Zvi Wiener 2 2 2 VaR-PJorion-Ch 4-6 slide 20 Time Aggregation T annualT T annual T Assuming normality Zvi Wiener VaR-PJorion-Ch 4-6 slide 21 Time Aggregation Assume that yearly parameters of CPI are: mean = 5%, standard deviation (SD) = 2%. Then daily mean and SD of CPI changes are: 1 d y 0.02% 250 1 d y 0.1265% 250 Zvi Wiener VaR-PJorion-Ch 4-6 slide 22 Portfolio 2(A+B) = 2(A) + 2(B) + 2(A)(B) A rf B Zvi Wiener VaR-PJorion-Ch 4-6 slide 23 ¥ ¥$£ £¥ $¥ $£¥ $ Zvi Wiener £$¥ £$ VaR-PJorion-Ch 4-6 £ slide 24 X X X 2 X 1 X 2Cos 2 12 2 1 2 2 2 1 2 12 2 12 2 1 2 2 12 ~ Cos John Zerolis "Triangulating Risk", Risk v.9 n.12, Dec. 1996 Zvi Wiener 2 VaR-PJorion-Ch 4-6 12 1 slide 25 Example We will receive n dollars where n is determined by a die. What would be a fair price for participation in this game? Zvi Wiener VaR-PJorion-Ch 4-6 slide 26 Example 1 Score Probability 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Zvi Wiener 1 2 3 4 5 6 3.5 6 6 6 6 6 6 Fair price is 3.5 NIS. Assume that we can play the game for 3 NIS only. VaR-PJorion-Ch 4-6 slide 27 Example If there is a pair of dice the mean is doubled. What is the probability to gain $5? Zvi Wiener VaR-PJorion-Ch 4-6 slide 28 Example All combinations: 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6 36 combinations with equal probabilities Zvi Wiener VaR-PJorion-Ch 4-6 slide 29 Example All combinations: 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6 4 out of 36 give $5, probability = 1/9 Zvi Wiener VaR-PJorion-Ch 4-6 slide 30 Additional information: the first die gives 4. All combinations: 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6 1 out of 9 give $5, probability = 1/9 Zvi Wiener VaR-PJorion-Ch 4-6 slide 31 Additional information: the first die gives 4. All combinations: 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6 4 out of 24 give $5, probability = 1/6 Zvi Wiener VaR-PJorion-Ch 4-6 slide 32 Example 1 1 16.67% 6 -2 Zvi Wiener -1 0 1 VaR-PJorion-Ch 4-6 2 3 slide 33 Example 1 1 2 3 4 5 6 Zvi Wiener 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 VaR-PJorion-Ch 4-6 6 7 8 9 10 11 12 we pay 6 NIS. slide 34 P&L 1 2 3 4 5 6 Zvi Wiener 1 -4 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 -2 -1 0 1 2 3 4 -1 0 1 2 3 4 5 0 1 2 3 4 5 VaR-PJorion-Ch 4-6 6 1 2 3 4 5 6 slide 35 Example 1 (2 cubes) 0.15 0.125 0.1 0.075 0.05 0.025 -4 Zvi Wiener -3 -2 -1 0 1 VaR-PJorion-Ch 4-6 2 3 4 5 6 slide 36 Example 1 (5 cubes) 0.1 0.08 0.06 0.04 0.02 -10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 101112131415 Zvi Wiener VaR-PJorion-Ch 4-6 slide 37 Random Variables Values, probabilities. Distribution function, cumulative probability. Example: a die with 6 faces. Zvi Wiener VaR-PJorion-Ch 4-6 slide 38 Random Variables Distribution function of a random variable X F(x) = P(X x) - the probability of x or less. If X is discrete then F ( x ) f ( xi ) xi x x If X is continuous then F ( x) dF ( x) Note that f ( x) dx Zvi Wiener VaR-PJorion-Ch 4-6 f (u)du slide 39 Random Variables Probability density function of a random variable X has the following properties f ( x) 0 1 f (u )du Zvi Wiener VaR-PJorion-Ch 4-6 slide 40 Moments Mean = Average = Expected value E( X ) xf ( x ) dx Variance V (X ) 2 x E ( X ) 2 f ( x)dx S tan dard Deviation Variance Zvi Wiener VaR-PJorion-Ch 4-6 slide 41 Cov( X 1 , X 2 ) E X 1 EX 1 X 2 EX 2 ( X1, X 2 ) Cov( X 1 , X 2 ) 1 2 Skewness (non-symmetry) Kurtosis (fat tails) Zvi Wiener Its meaning ... 1 3 1 VaR-PJorion-Ch 4-6 4 E X E X 3 E X E X 4 slide 42 Main properties E (a bX ) a bE ( X ) (a bX ) b ( X ) E( X 1 X 2 ) E( X 1 ) E( X 2 ) ( X 1 X 2 ) ( X 1 ) ( X 2 ) 2Cov( X 1 , X 2 ) 2 Zvi Wiener 2 2 VaR-PJorion-Ch 4-6 slide 43 Portfolio of Random Variables N Y wi X i w X T i 1 N E (Y ) p w E ( X ) w X wi i T T i 1 N N (Y ) w w wi ij w j 2 T i 1 j 1 Zvi Wiener VaR-PJorion-Ch 4-6 slide 44 Transformation of Random Variables Consider a zero coupon bond 100 V T (1 r ) If r=6% and T=10 years, V = $55.84, we wish to estimate the probability that the bond price falls below $50. This corresponds to the yield 7.178%. Zvi Wiener VaR-PJorion-Ch 4-6 slide 45 Example The probability of this event can be derived from the distribution of yields. Assume that yields change are normally distributed with mean zero and volatility 0.8%. Then the probability of this change is 7.06% Zvi Wiener VaR-PJorion-Ch 4-6 slide 46 Quantile Quantile (loss/profit x with probability c) x F ( x) f (u)du c 50% quantile is called median Very useful in VaR definition. Zvi Wiener VaR-PJorion-Ch 4-6 slide 47 FRM-99, Question 11 X and Y are random variables each of which follows a standard normal distribution with cov(X,Y)=0.4. What is the variance of (5X+2Y)? A. 11.0 B. 29.0 C. 29.4 D. 37.0 Zvi Wiener VaR-PJorion-Ch 4-6 slide 48 FRM-99, Question 11 2 A B 2 A 2 B 5 2 2 0.4 5 2 37 2 Zvi Wiener 2 VaR-PJorion-Ch 4-6 slide 49 FRM-99, Question 21 The covariance between A and B is 5. The correlation between A and B is 0.5. If the variance of A is 12, what is the variance of B? A. 10.00 B. 2.89 C. 8.33 D. 14.40 Zvi Wiener VaR-PJorion-Ch 4-6 slide 50 FRM-99, Question 21 B Cov( A, B ) A B Cov( A, B) A 2.89 8.33 2 B Zvi Wiener VaR-PJorion-Ch 4-6 slide 51 Uniform Distribution Uniform distribution defined over a range of 2 values axb. ab 2 (b a) E( X ) , (X ) 2 12 1 f ( x) , a xb ba xa 0, x a F ( x) , a xb b a bx 1, Zvi Wiener VaR-PJorion-Ch 4-6 slide 52 Uniform Distribution 1 1 ba a Zvi Wiener b VaR-PJorion-Ch 4-6 slide 53 Normal Distribution Is defined by its mean and variance. f ( x) 1 2 e ( x )2 2 2 E( X ) , ( X ) 2 2 Cumulative is denoted by N(x). Zvi Wiener VaR-PJorion-Ch 4-6 slide 54 Normal Distribution 66% of events lie between -1 and 1 0.4 0.3 95% of events lie between -2 and 2 0.2 0.1 -3 Zvi Wiener -2 -1 1 VaR-PJorion-Ch 4-6 2 3 slide 55 Normal Distribution 1 0.8 0.6 0.4 0.2 -3 Zvi Wiener -2 -1 1 VaR-PJorion-Ch 4-6 2 3 slide 56 Normal Distribution symmetric around the mean mean = median skewness = 0 kurtosis = 3 linear combination of normal is normal 99.99 99.90 99 97.72 97.5 95 90 84.13 3.715 3.09 2.326 2.000 1.96 1.645 1.282 1 Zvi Wiener VaR-PJorion-Ch 4-6 50 0 slide 57 Central Limit Theorem The mean of n independent and identically distributed variables converges to a normal distribution as n increases. 1 n X Xi n i 1 2 X N , n Zvi Wiener VaR-PJorion-Ch 4-6 slide 58 Lognormal Distribution The normal distribution is often used for rate of return. Y is lognormally distributed if X=lnY is normally distributed. No negative values! f ( x) E( X ) e 2 2 1 x 2 (ln(x ) ) 2 e , (X ) e 2 2 2 2 2 2 e 2 2 E (Y ) E (ln X ) , (Y ) (ln X ) 2 Zvi Wiener VaR-PJorion-Ch 4-6 2 2 slide 59 Lognormal Distribution If r is the expected value of the lognormal variable X, the mean of the associated normal variable is r-0.52. 0.6 0.5 0.4 0.3 0.2 0.1 0.5 Zvi Wiener 1 1.5 2 VaR-PJorion-Ch 4-6 2.5 3 slide 60 Student t Distribution Arises in hypothesis testing, as it describes the distribution of the ratio of the estimated coefficient to its standard error. k - degrees of freedom. k 1 1 2 1 f ( x) k 1 k k x2 2 1 2 k k 1 x (k ) x e dx 0 Zvi Wiener VaR-PJorion-Ch 4-6 slide 61 Student t Distribution As k increases t-distribution tends to the normal one. This distribution is symmetrical with mean zero and variance (k>2) k ( x) k 2 2 The t-distribution is fatter than the normal one. Zvi Wiener VaR-PJorion-Ch 4-6 slide 62 Binomial Distribution Discrete random variable with density function: n x n x f ( x) p (1 p) , x 0,1,., n x E ( X ) pn, ( X ) p(1 p)n 2 For large n it can be approximated by a normal. x pn z ~ N (0,1) p(1 p)n Zvi Wiener VaR-PJorion-Ch 4-6 slide 63 FRM-99, Question 12 For a standard normal distribution, what is the approximate area under the cumulative distribution function between the values -1 and 1? A. 50% B. 66% Error! C. 75% D. 95% Zvi Wiener VaR-PJorion-Ch 4-6 slide 64 FRM-99, Question 13 What is the kurtosis of a normal distribution? A. 0 B. can not be determined, since it depends on the variance of the particular normal distribution. C. 2 D. 3 Zvi Wiener VaR-PJorion-Ch 4-6 slide 65 FRM-99, Question 16 If a distribution with the same variance as a normal distribution has kurtosis greater than 3, which of the following is TRUE? A. It has fatter tails than normal distribution B. It has thinner tails than normal distribution C. It has the same tail fatness as normal D. can not be determined from the information provided Zvi Wiener VaR-PJorion-Ch 4-6 slide 66 FRM-99, Question 5 Which of the following statements best characterizes the relationship between normal and lognormal distributions? A. The lognormal distribution is logarithm of the normal distribution. B. If ln(X) is lognormally distributed, then X is normally distributed. C. If X is lognormally distributed, then ln(X) is normally distributed. D. The two distributions have nothing in common Zvi Wiener VaR-PJorion-Ch 4-6 slide 67 FRM-98, Question 10 For a lognormal variable x, we know that ln(x) has a normal distribution with a mean of zero and a standard deviation of 0.2, what is the expected value of x? A. 0.98 B. 1.00 C. 1.02 D. 1.20 Zvi Wiener VaR-PJorion-Ch 4-6 slide 68 FRM-98, Question 10 E[ X ] e Zvi Wiener 2 2 e 0.2 2 0 2 VaR-PJorion-Ch 4-6 1.02 slide 69 FRM-98, Question 16 Which of the following statements are true? I. The sum of normal variables is also normal II. The product of normal variables is normal III. The sum of lognormal variables is lognormal IV. The product of lognormal variables is lognormal A. I and II B. II and III C. III and IV D. I and IV Zvi Wiener VaR-PJorion-Ch 4-6 slide 70 FRM-99, Question 22 Which of the following exhibits positively skewed distribution? I. Normal distribution II. Lognormal distribution III. The returns of being short a put option IV. The returns of being long a call option A. II only B. III only C. II and IV only D. I, III and IV only Zvi Wiener VaR-PJorion-Ch 4-6 slide 71 FRM-99, Question 22 C. The lognormal distribution has a long right tail, since the left tail is cut off at zero. Long positions in options have limited downsize, but large potential upside, hence a positive skewness. Zvi Wiener VaR-PJorion-Ch 4-6 slide 72 FRM-99, Question 3 It is often said that distributions of returns from financial instruments are leptokurtotic. For such distributions, which of the following comparisons with a normal distribution of the same mean and variance MUST hold? A. The skew of the leptokurtotic distribution is greater B. The kurtosis of the leptokurtotic distribution is greater C. The skew of the leptokurtotic distribution is smaller D. The kurtosis of the leptokurtotic distribution is smaller Zvi Wiener VaR-PJorion-Ch 4-6 slide 73 Financial Risk Management Following P. Jorion, Value at Risk, McGraw-Hill Chapter 5 Computing Value at Risk RM http://pluto.mscc.huji.ac.il/~mswiener/zvi.html HUJI-03 Zvi Wiener VaR-PJorion-Ch 4-6 slide 75 Breakfast Lunch $2 $4 $5 $7 $9 50% $11 $13 $15 50% 50% = $11 Zvi Wiener VaR-PJorion-Ch 4-6 50% = ?? slide 76 Correlation =+1 Breakfast $5 $2 $4 $7 $9 Lunch $11 $13 $15 50% 50% = $11 Zvi Wiener VaR-PJorion-Ch 4-6 50% 50% = $4 slide 77 Correlation =-1 Breakfast $2 $4 $5 $7 $9 50% $11 $13 $15 50% 50% 50% Lunch = $11 Zvi Wiener VaR-PJorion-Ch 4-6 = $2 slide 78 Correlation =0 Breakfast $2 $4 $5 $7 $9 50% $11 $13 $15 50% 50% 50% Lunch = $11 Zvi Wiener VaR-PJorion-Ch 4-6 = $3.16 slide 79 How to measure VaR Historical Simulations Variance-Covariance Monte Carlo Analytical Methods Parametric versus non-parametric approaches Zvi Wiener VaR-PJorion-Ch 4-6 slide 80 Historical Simulations Fix current portfolio. Pretend that market changes are similar to those observed in the past. Calculate P&L (profit-loss). Find the lowest quantile. Zvi Wiener VaR-PJorion-Ch 4-6 slide 81 Example Assume we have $1 and our main currency is SHEKEL. Today $1=4.30. Historical data: P&L 4.00 4.20 4.30*4.20/4.00 = 4.515 0.215 4.20 4.30*4.20/4.20 = 4.30 0 4.10 4.30*4.10/4.20 = 4.198 -0.112 4.15 4.30*4.15/4.10 = 4.352 0.052 Zvi Wiener VaR-PJorion-Ch 4-6 slide 82 USD NIS 2003 100 -120 2004 200 100 2005 -300 -20 2006 20 30 today Zvi Wiener 100 200 300 20 2 3 1 0.06 (1 0.061) (1 0.062) (1 0.063) 4 120 100 20 30 2 3 1 0.1 (1 0.11) (1 0.12) (1 0.13) 4 VaR-PJorion-Ch 4-6 slide 83 today Changes in IR 100 200 300 20 2 3 1 0.06 (1 0.061) (1 0.062) (1 0.063) 4 120 100 20 30 2 3 1 0.1 (1 0.11) (1 0.12) (1 0.13) 4 USD: NIS: +1% +1% +1% 0% +1% -1% +1% -1% 100 200 300 20 2 3 1 0.07 (1 0.071) (1 0.072) (1 0.073) 4 120 100 20 30 2 3 1 0.11 (1 0.11) (1 0.11) (1 0.12) 4 Zvi Wiener VaR-PJorion-Ch 4-6 slide 84 Returns year 1% of worst cases Zvi Wiener VaR-PJorion-Ch 4-6 slide 85 VaR 1 0.8 0.6 0.4 VaR1% 1% 0.2 Profit/Loss -3 Zvi Wiener -2 -1 VaR-PJorion-Ch 4-6 1 2 3 slide 86 Variance Covariance Means and covariances of market factors Mean and standard deviation of the portfolio Delta or Delta-Gamma approximation VaR1%= P – 2.33 P Based on the normality assumption! Zvi Wiener VaR-PJorion-Ch 4-6 slide 87 Variance-Covariance VaR1% V 2.33 V 1% 2.33 -2.33 Zvi Wiener VaR-PJorion-Ch 4-6 slide 88 Monte Carlo 1 0.5 -1 0.5 -0.5 1 -0.5 -1 Zvi Wiener VaR-PJorion-Ch 4-6 slide 89 Monte Carlo Distribution of market factors Simulation of a large number of events P&L for each scenario Order the results VaR = lowest quantile Zvi Wiener VaR-PJorion-Ch 4-6 slide 90 Monte Carlo Simulation 15 10 5 10 20 30 40 -5 -10 -15 Zvi Wiener VaR-PJorion-Ch 4-6 slide 91 Weights Since old observations can be less relevant, there is a technique that assigns decreasing weights to older observations. Typically the decrease is exponential. See RiskMetrics Technical Document for details. Zvi Wiener VaR-PJorion-Ch 4-6 slide 92 Stock Portfolio Single risk factor or multiple factors Degree of diversification Tracking error Rare events Zvi Wiener VaR-PJorion-Ch 4-6 slide 93 Bond Portfolio Duration Convexity Partial duration Key rate duration OAS, OAD Principal component analysis Zvi Wiener VaR-PJorion-Ch 4-6 slide 94 Options and other derivatives Greeks Full valuation Credit and legal aspects Collateral as a cushion Hedging strategies Liquidity aspects Zvi Wiener VaR-PJorion-Ch 4-6 slide 95 Credit Portfolio rating, scoring credit derivatives reinsurance probability of default recovery ratio Zvi Wiener VaR-PJorion-Ch 4-6 slide 96 Credit Rating and Default Rates Rating Aaa Aa A Baa Ba B Zvi Wiener Default frequency 1 year 10 years 0.02% 1.49% 0.05% 3.24% 0.09% 5.65% 0.17% 10.50% 0.77% 21.24% 2.32% 37.98% VaR-PJorion-Ch 4-6 slide 97 Returns Past spot rates S0, S1, S2,…, St. We need to estimate St+1. Random variable S t S t 1 rt S t 1 St Alternatively we can do Rt ln S t 1 St S t S t 1 ln 1 ln 1 rt rt Rt ln S t 1 S t 1 Zvi Wiener VaR-PJorion-Ch 4-6 slide 98 Independent returns A very important question is whether a sequence of observations can be viewed as independent. If so, one could assume that it is drawn from a known distribution and then one can estimate parameters. In an efficient market returns on traded assets are independent. Zvi Wiener VaR-PJorion-Ch 4-6 slide 99 Random Walk We could consider that the observations rt are independent draws from the same distribution N(, 2). They are called i.i.d. = independently and identically distributed. An extension of this model is a non-stationary environment. Often fat tails are observed. Zvi Wiener VaR-PJorion-Ch 4-6 slide 100 Time Aggregation S2 S 2 S1 S1 S2 ln ln R01 R12 R02 ln ln S1 S0 S1 S 0 S0 E ( R02 ) E ( R01 ) E ( R12 ) ( R02 ) ( R01 ) ( R12 ) 2Cov( R01 , R12 ) 2 2 2 E ( R02 ) 2 E ( R01 ) ( R02 ) 2 ( R01 ) 2 Zvi Wiener 2 VaR-PJorion-Ch 4-6 slide 101 Time Aggregation E ( RT ) E ( R1 )T ( RT ) ( R1 )T 2 2 ( RT ) ( R1 ) T Zvi Wiener VaR-PJorion-Ch 4-6 slide 102 FRM-99, Question 4 Random walk assumes that returns from one time period are statistically independent from another period. This implies: A. Returns on 2 time periods can not be equal. B. Returns on 2 time periods are uncorrelated. C. Knowledge of the returns from one period does not help in predicting returns from another period D. Both b and c. Zvi Wiener VaR-PJorion-Ch 4-6 slide 103 FRM-99, Question 14 Suppose returns are uncorrelated over time. You are given that the volatility over 2 days is 1.2%. What is the volatility over 20 days? A. 0.38% B. 1.2% C. 3.79% D. 12.0% Zvi Wiener VaR-PJorion-Ch 4-6 slide 104 FRM-99, Question 14 ( R20 ) 10 ( R10 ) Zvi Wiener VaR-PJorion-Ch 4-6 slide 105 FRM-98, Question 7 Assume an asset price variance increases linearly with time. Suppose the expected asset price volatility for the next 2 months is 15% (annualized), and for the 1 month that follows, the expected volatility is 35% (annualized). What is the average expected volatility over the next 3 months? A. 22% B. 24% C. 25% D. 35% Zvi Wiener VaR-PJorion-Ch 4-6 slide 106 FRM-98, Question 7 13 0.15 0.15 0.35 2 1 2 2 av Zvi Wiener 2 3 13 3 2 2 2 0.236 24% VaR-PJorion-Ch 4-6 slide 107 Financial Risk Management Following P. Jorion, Value at Risk, McGraw-Hill Chapter 6 Backtesting VaR Models RM http://pluto.mscc.huji.ac.il/~mswiener/zvi.html HUJI-03 Backtesting Verification of Risk Management models. Comparison if the model’s forecast VaR with the actual outcome - P&L. Exception occurs when actual loss exceeds VaR. After exception - explanation and action. Zvi Wiener VaR-PJorion-Ch 4-6 slide 109 Backtesting Green zone - up to 4 exceptions OK Yellow zone - 5-9 exceptions increasing k Red zone - 10 exceptions or more intervention Zvi Wiener VaR-PJorion-Ch 4-6 slide 110 Probability of Multiple Exceptions Each period the probability of exception is 1%, then after 250 business days the probability that there will be 0 exceptions is 250! 0 250 0.01 0.99 0.081 0!250! General formula of binomial distribution is n! x n x p (1 p) x!(n x)! Zvi Wiener VaR-PJorion-Ch 4-6 slide 111 The End Zvi Wiener VaR-PJorion-Ch 4-6 slide 112 FRM-00, Question 93 A fund manages an equity portfolio worth $50M with a beta of 1.8. Assume that there exists an index call option contract with a delta of 0.623 and a value of $0.5M. How many options contracts are needed to hedge the portfolio? A. 169 B. 289 C. 306 D. 321 Zvi Wiener VaR-PJorion-Ch 4-6 slide 113 FRM-00, Question 93 The optimal hedge ratio is N = -1.8$50,000,000/(0.623$500,000)=289 Zvi Wiener VaR-PJorion-Ch 4-6 slide 114 VaR system Risk factors Portfolio Historical data positions Model Mapping Distribution of risk factors VaR method Exposures VaR Zvi Wiener VaR-PJorion-Ch 4-6 slide 115