Download Single channel high-side solid-state relay

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
VN920
Single channel high-side solid-state relay
Features
Type
RDS(on)
IOUT
VCC
VN920
VN920-B5
VN920SO
16 mΩ
30 A
36 V
u
d
o
r
P
e
■
CMOS compatible input
■
Proportional load current sense
■
Shorted load protection
■
Under-voltage and over-voltage shutdown
■
Over-voltage clamp
■
Thermal shutdown
■
Current limitation
■
Protection against loss of ground and loss of
VCC
■
Very low standby power dissipation
■
Reverse battery protected (see Application
schematic )
SO-16L
P
e
t
e
l
o
s
b
O
Table 1.
t
e
l
o
Description
)
(s
t
c
u
d
o
r
)
s
(
ct
P2PAK
PENTAWATT
s
b
O
The VN920 is a monolithic device designed in
STMicroelectronics VIPower M0-3 technology.
The VN920 is intended for driving any type of load
with one side connected to ground. The active
VCC pin voltage clamp protects the device against
low energy spikes (see ISO7637 transient
compatibility table). Active current limitation
combined with thermal shutdown and automatic
restart protects the device against over-load.
The device integrates an analog current sense
output which delivers a current proportional to the
load current. The device automatically turns off in
the case where the ground pin becomes
disconnected.
Device summary
Order codes
Package
Tube
Tape and reel
VN920
-
P PAK
VN920-B5
VN920-B513TR
SO-16L
VN920SO
VN920SO13TR
PENTAWATT
2
September 2013
DocID7371 Rev 6
1/34
www.st.com
34
Contents
VN920
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
r
P
e
3.1.1
Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 16
3.1.2
Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 17
t
e
l
o
3.2
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
P2PAK maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . 18
3.5
SO-16L maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . 19
)
(s
s
b
O
t
c
u
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
s
b
O
d
o
r
4.1
SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2
P2PAK thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
P
e
t
e
l
o
5
2/34
u
d
o
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
6
)
s
(
ct
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2
PENTAWATT mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3
P2PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4
SO-16L packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5
PENTAWATT packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6
P2PAK packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VN920
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Switching (VCC=13V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Current sense (9V ≤VCC ≤16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VCC output diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SO-16L thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
P2PAK thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PENTAWATT mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
P2PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
3/34
List of figures
VN920
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
High-level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Over-voltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
On-state resistance vs VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input high-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
P2PAK maximum turn-off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SO-16L maximum turn-off current versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SO-16L PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SO-16L Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . 20
SO-16L thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . 21
Thermal fitting model of a single channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . 21
P2PAK PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
P2PAK Rthj-amb Vs. PCB copper area in open box free air condition . . . . . . . . . . . . . . . 23
P2PAK thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . 23
Thermal fitting model of a single channel HSD in P2PAK. . . . . . . . . . . . . . . . . . . . . . . . . . 24
SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PENTAWATT package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
P2PAK package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SO-16L tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SO-16L tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PENTAWATT tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
P2PAK tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
P2PAK tape and reel (suffix “13TR”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
t
c
u
t
e
l
o
P
e
s
b
O
4/34
d
o
r
s
b
O
VN920
1
Block diagram and pin description
Block diagram and pin description
Figure 1.
Block diagram
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
)
s
(
ct
Power CLAMP
DRIVER
du
LOGIC
INPUT
o
r
P
CURRENT LIMITER
VDS LIMITER
IOUT
e
t
e
ol
OVERTEMPERATURE
DETECTION
Figure 2.
)
(s
t
c
u
CURRENT
SENSE
K
s
b
O
Configuration diagram (top view)
od
e
t
e
ol
OUTPUT
Pr
5
4
3
2
1
VCC
OUTPUT
C.SENSE
VCC
INPUT
GND
1
16
OUTPUT
GND
OUTPUT
INPUT
OUTPUT
C.SENSE
N.C.
OUTPUT
OUTPUT
OUTPUT
N.C.
VCC
bs
VCC
N.C.
8
9
VCC
P2PAK/ PENTAWATT
SO-16L
O
Table 2.
Suggested connections for unused and not connected pins
Connection / pin
Current Sense
Floating
To ground
Through 1KΩ
resistor
N.C.
Output
Input
X
X
X
X
Through 10KΩ
resistor
5/34
Electrical specifications
2
VN920
Electrical specifications
Figure 3.
Current and voltage conventions
IS
VCC
VF
VCC
IOUT
OUTPUT
IIN
VOUT
INPUT
VIN
ISENSE
CURRENT SENSE
)
s
(
ct
VSENSE
GND
IGND
2.1
u
d
o
r
P
e
t
e
l
o
Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to Absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics sure
program and other relevant quality document.
Table 3.
VCC
ol
bs
O
t
c
u
Absolute maximum ratings
od
Pr
Symbol
ete
)
(s
s
b
O
DC supply voltage
SO-16L
PENTAWATT
P2PAK
Unit
41
V
- VCC
Reverse DC supply voltage
- 0.3
V
- Ignd
DC reverse ground pin current
- 200
mA
IOUT
DC output current
Internally limited
A
- 21
A
+/- 10
mA
-3
+ 15
V
V
4000
2000
5000
5000
V
V
V
V
- IOUT
IIN
Reverse DC output current
DC input current
VCSENSE Current sense maximum voltage
VESD
6/34
Value
Parameter
Electrostatic discharge
(human body model: R = 1.5KΩ;
C = 100pF)
INPUT
CURRENT SENSE
OUTPUT
VCC
VN920
Electrical specifications
Table 3.
Absolute maximum ratings (continued)
Value
Symbol
Parameter
SO-16L
EMAX
Maximum switching energy
(L = 0.25mH; RL= 0Ω;
Vbat = 13.5V; Tjstart = 150ºC;
IL = 45A)
352
Ptot
Power dissipation TC ≤25°C
8.3
96.1
Tj
Junction operating temperature
Tc
Case operating temperature
- 40 to 150
Storage temperature
- 55 to 150
Tstg
2.2
PENTAWATT
Unit
364
mJ
96.1
W
Internally limited
°C
)
s
(
ct
°C
°C
u
d
o
Thermal data
Table 4.
P2PAK
r
P
e
Thermal data
t
e
l
o
Max. value
Symbol
Parameter
PENTAWATT
P2PAK
-
1.3
1.3
15
-
SO-16L
1.
Rthj-case
Thermalresistance
junction-case
Rthj-lead
Thermalresistance
junction-lead
Rthj-amb
Thermalresistance
junction-ambient
du
ct
)
(s
s
b
O
65(1)
48(3)
61.3
Unit
°C/W
°C/W
51.3(2)
°C/W
37(4)
°C/W
o
r
P
When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins.
2. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
e
t
e
ol
3. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick) connected to all VCC pins.
4. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick).
s
b
O
7/34
Electrical specifications
2.3
VN920
Electrical characteristics
Values specified in this section are for 8V < VCC < 36V; -40°C < Tj < 150°C, unless otherwise
stated.
Table 5.
Power
Symbol
Parameter
VCC
Test conditions
Min.
Typ.
Operating supply voltage
5.5
13
36
V
VUSD
Under-voltage shutdown
3
4
5.5
V
VOV
Over-voltage shutdown
36
RON
On-state resistance
ICC = 20mA
Off-state; VCC = 13V;
VIN = VOUT = 0V
e
t
e
ol
Off-state; VCC = 13V;
VIN = VOUT = 0V; Tj = 25°C
Supply current
IS
V
IOUT = 10A; Tj = 25°C;
IOUT = 10A;
IOUT = 3A; VCC = 6V
VCLAMP Clamp voltage
Off-state output current
IL(off2)
Off-state output current
IL(off3)
Off-state output current
IL(off4)
e
t
e
ol
Note:
bs
O
8/34
du
o
r
P
Off-state output current
mΩ
mΩ
mΩ
du
41
48
55
V
o
r
P
10
25
µA
10
20
µA
5
mA
s
b
O
0
50
µA
VIN = 0V; VOUT = 3.5V
-75
0
µA
VIN = VOUT = 0V; VCC = 13V;
Tj = 125°C
5
µA
VIN = VOUT = 0V; VCC = 13V;
Tj = 25°C
3
µA
)-
s
(
t
c
16
32
55
)
s
(
ct
On-state; VCC = 13V; VIN = 5V;
IOUT = 0A; RSENSE = 3.9 kΩ
IL(off1)
Max. Unit
VIN = VOUT = 0V
VCLAMP and VOV are correlated. Typical difference is 5V.
Table 6.
Symbol
Switching (VCC=13V)
Parameter
Test conditions
Min.
Typ.
Max. Unit
td(on)
Turn-on delay time
RL = 1.3Ω (see Figure 4.)
50
µs
td(off)
Turn-off delay time
RL = 1.3Ω (see Figure 4.)
50
µs
dVOUT/dt(on) Turn-on voltage slope RL = 1.3Ω (see Figure 4.)
See Figure 10.
V/µs
dVOUT/dt(off) Turn-off voltage slope RL = 1.3Ω (see Figure 4.)
See Figure 12.
V/µs
VN920
Electrical specifications
Table 7.
Logic inputs
Symbol
Parameter
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high-level voltage
IIH
High-level input current
VI(hyst)
Input hysteresis voltage
VICL
K1
dK1/K1
K2
dK2/K2
K3
b
O
ISENSE0
VSENSE
VSENSEH
Typ.
Unit
1.25
V
µA
3.25
V
10
0.5
IIN = 1mA
IIN = - 1mA
Test conditions
IOUT/ISENSE
IOUT = 1A; VSENSE = 0.5V;
Tj = -40°C...150°C
Current sense
ratio drift
IOUT = 1A; VSENSE = 0.5V;
Tj= - 40°C...150°C
IOUT/ISENSE
IOUT = 10A; VSENSE = 4V;
Tj = - 40°C
Tj= 25°C...150°C
Current sense
ratio drift
IOUT = 10A; VSENSE = 4V;
Tj = -40°C...150°C
IOUT/ISENSE
IOUT = 30A; VSENSE = 4V;
Tj = -40°C
Tj = 25°C...150°C
e
t
e
l
o
s
b
O
)
s
(
t
c
u
d
o
Max.
1
VIN = 3.25V
Parameter
Pr
dK3/K3
Min.
6
6.8
- 0.7
8
Current sense
ratio drift
IOUT = 30A; VSENSE = 4V;
Tj = -40°C...150°C
Analog sense
current
VCC = 6...16V; IOUT = 0A;
VSENSE = 0V;
Tj = -40°C...150°C
Max analog
sense output
voltage
VCC = 5.5V; IOUT = 5A;
RSENSE = 10kΩ
VCC > 8V, IOUT = 10A;
RSENSE = 10kΩ
Sense voltage in
over-temperature VCC = 13V; RSENSE = 3.9kΩ
condition
o
r
P
Typ.
4400
-10
4200
4400
-8
4200
4400
Max.
%
6000
5750
+8
4900
4900
Unit
6000
+10
4900
4900
V
V
)
s
(
ct
du
Min.
3300
µA
V
Current sense (9V ≤VCC ≤16V)
Symbol
e
t
e
l
VIN = 1.25V
Input clamp voltage
Table 8.
so
Test conditions
%
5500
5250
-6
+6
%
0
10
µA
2
V
4
V
5.5
V
9/34
Electrical specifications
Table 8.
Symbol
VN920
Current sense (9V ≤VCC ≤16V) (continued)
Parameter
Test conditions
Min.
Typ.
Analog sense
output
VCC = 13V; Tj > TTSD;
RVSENSEH impedance in
output open
over-temperature
condition
tDSENSE
Current sense
delay response
Max.
Unit
Ω
400
To 90% ISENSE(1)
500
µs
1. Current sense signal delay after positive input slope.
Table 9.
Symbol
Parameter
Test conditions
VF
Forward on voltage
- IOUT = 5A; Tj = 150°C
Table 10.
Protections(1)
Symbol
Parameter
TTSD
TR
Reset temperature
Thyst
Thermal hysteresis
Current limitation
Vdemag
VON
e
t
e
ol
s
b
O
10/34
o
r
P
du
Output voltage drop
limitation
o
s
b
O
)
s
(
t
c
Turn-off output clamp
voltage
Min.
VCC = 13V
5V < VCC < 36V
Typ.
u
d
o
r
P
e
let
Test conditions
Shutdown temperature
Ilim
)
s
(
ct
VCC output diode
Max.
Unit
0.6
V
Min.
Typ.
Max.
Unit
150
175
200
°C
135
°C
7
15
30
45
°C
75
75
A
A
IOUT = 2 A;
VIN = 0V;
L = 6mH
VCC - 41 VCC - 48 VCC - 55
V
IOUT = 1 A;
Tj = -40°C...150°C
50
mV
1. To ensure long term reliability under heavy over-load or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device operates under
abnormal conditions this software must limit the duration and number of activation cycles.
VN920
Electrical specifications
Table 11.
Truth table
Conditions
Input
Output
Sense
Normal operation
L
H
L
H
0
Nominal
Over-temperature
L
H
L
L
0
VSENSEH
Under-voltage
L
H
L
L
0
0
Over-voltage
L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
Short circuit to VCC
L
H
H
H
Negative output voltage clamp
L
Table 12.
Test pulse
I
1
- 25V(1)
2
+ 25V(1)
Pr
e
t
e
l
o
s
b
5
(1)
- 25V
+ 25V
-
)II
s
b
O
0
(1)
4V(1)
+ 26.5V(1)
III
IV
Delays and impedance
- 50V(1)
- 75V(1)
- 100V(1)
2ms, 10Ω
+ 50V(1)
+ 75V(1)
+ 100V(1)
0.2ms, 10Ω
-
50V(1)
100V(1)
-
150V(1)
0.1µs, 50Ω
+
50V(1)
+
100V(1)
0.1µs, 50Ω
-
5V(1)
7V(1)
100ms, 0.01Ω
t(s
uc
od
3a
4
t
e
l
o
L
0
< Nominal
Test level
7637/1
3b
u
d
o
r
P
e
Electrical transient requirements
ISO T/R
)
s
(
ct
0
(Tj<TTSD) 0
(Tj>TTSD) VSENSEH
+ 46.5V(2)
-
+
75V(1)
-
6V(1)
+ 66.5V(2)
-
+ 86.5V(2)
400ms, 2Ω
1. All functions of the device are performed as designed after exposure to disturbance.
2. One or more functions of the device is not performed as designed after exposure and cannot be returned to
proper operation without replacing the device.
O
11/34
Electrical specifications
Figure 4.
VN920
Switching characteristics
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
ISENSE
90%
t
u
d
o
tDSENSE
INPUT
td(on)
)
s
(
ct
td(off)
r
P
e
t
e
l
o
Figure 5.
)
(s
IOUT/ISENSE versus IOUT
IOUT/ISENSE
d
o
r
P
e
5500
t
e
l
o
s
b
O
s
b
O
t
c
u
6500
6000
t
max.Tj=-40°C
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
min.Tj=-40°C
4000
3500
3000
0
2
4
6
8
10
12
14
16
IOUT (A)
12/34
18
20
22
24
26
28
30
32
VN920
Electrical specifications
Figure 6.
Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
)
s
(
ct
LOAD CURRENT
SENSE
u
d
o
OVERVOLTAGE
r
P
e
VOV
VCC
VOVhyst
VCC > VUSD
INPUT
LOAD CURRENT
SENSE
t
e
l
o
s
b
O
SHORT TO GROUND
INPUT
)
(s
LOAD CURRENT
LOAD VOLTAGE
SENSE
od
r
P
e
INPUT
s
b
O
t
e
l
o
t
c
u
SHORT TO VCC
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
VSENSEH
RSENSE
13/34
Electrical specifications
VN920
2.4
Electrical characteristics curves
Figure 7.
Off-state output current
Figure 8.
High-level input current
)
s
(
ct
Figure 9.
u
d
o
Input clamp voltage
t
e
l
o
dVout/dt(on) (V/ms)
Vicl (V)
10
700
9.5
650
bs
Iin=1mA
9
O
)
8
7.5
s
(
t
c
7
6.5
6
du
5.5
5
-50
-25
0
o
r
P
25
50
75
Tc (°C )
e
t
e
l
100
125
150
175
550
500
450
400
350
300
250
-50
-25
0
25
50
75
100
125
150
175
150
175
Tc (ºC )
Figure 11. Over-voltage shutdown
Figure 12. Turn-off voltage slope
so
Vov (V)
dVout/dt(off) (V/ms)
50
550
48
500
46
450
Vcc=13V
Rl=1.3Ohm
400
44
350
42
300
40
250
38
200
36
150
34
100
32
50
30
0
-50
-25
0
25
50
75
Tc (°C )
14/34
Vcc=13V
Rl=1.3Ohm
600
8.5
b
O
r
P
e
Figure 10. Turn-on voltage slope
100
125
150
175
-50
-25
0
25
50
75
Tc (°C )
100
125
VN920
Electrical specifications
Figure 13. ILIM vs Tcase
Figure 14. On-state resistance vs VCC
Ilim (A)
R on (mOhm)
100
50
90
45
Vcc=13V
80
40
70
35
60
30
50
25
40
20
30
15
20
10
10
5
0
Tc=150ºC
Tc=25ºC
Tc=- 40ºC
-25
0
25
50
75
100
125
150
175
5
10
15
20
Tc (°C )
25
30
35
Vcc (V)
Figure 15. Input high-level
40
u
d
o
Figure 16. Input hysteresis voltage
Vih (V)
Vhyst (V)
3.6
1.5
r
P
e
1.4
3.4
t
e
l
o
1.3
3.2
1.2
3
1.1
bs
2.8
2.6
2.4
)
s
(
t
2.2
2
-50
-25
0
25
50
c
u
d
75
Tc (°C )
100
125
150
175
o
r
P
Figure 17. On-state resistance vs Tcase
R on (mOhm)
e
t
e
ol
50
0.8
0.7
0.6
0.5
-50
-25
0
25
50
75
100
125
150
175
Tc (°C )
Figure 18. Input low level
Vil (V)
2.4
Iout=10A
Vcc=8V; 36V
40
-O
1
0.9
2.6
45
s
b
O
)
s
(
ct
0
-50
2.2
35
2
30
1.8
25
20
1.6
15
1.4
10
1.2
5
1
0
-50
-25
0
25
50
75
Tc (ºC )
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (°C )
15/34
Application information
3
VN920
Application information
Figure 19. Application schematic
+5V
VCC
Rprot
INPUT
Dld
Rprot
µC
)
s
(
ct
OUTPUT
CURRENT SENSE
RSENSE
u
d
o
GND
VGND
r
P
e
RGND
t
e
l
o
)
(s
DGND
s
b
O
3.1
GND protection network against reverse battery
3.1.1
Solution 1: resistor in the ground line (RGND only)
t
c
u
d
o
r
This can be used with any type of load.
P
e
The following is an indication on how to dimension the RGND resistor.
1.
t
e
l
o
2.
s
b
O
RGND ≤600mV / (IS(on)max).
RGND ≥ (- VCC) / (- IGND)
where - IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power Dissipation in RGND (when VCC < 0: during reverse battery situations) is:
PD= (- VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not shared by the device ground then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high-side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then ST suggests to utilize Solution 2 (see below).
16/34
VN920
3.1.2
Application information
Solution 2: diode (DGND) in the ground line
A resistor (RGND = 1kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network will produce a shift (≈ 600mV) in the input
threshold and in the status output values if the microprocessor ground is not common to the
device ground. This shift will not vary if more than one HSD shares the same diode/resistor
network.
Series resistor in INPUT and STATUS lines are also required to prevent that, during battery
voltage transient, the current exceeds the absolute maximum rating.
)
s
(
ct
Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.
3.2
u
d
o
Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the
VCC max DC rating. The same applies if the device is subject to transients on the VCC line
that are greater than the ones shown in the ISO 7637-2: 2004(E) table.
r
P
e
3.3
MCU I/Os protection
t
e
l
o
s
b
O
If a ground protection network is used and negative transient are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/Os pins to latch-up.
)
(s
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os.
t
c
u
d
o
r
-VCCpeak/Ilatchup ≤Rprot ≤(VOHµC-VIH-VGND) / IIHmax
P
e
Calculation example:
t
e
l
o
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
bs
5kΩ ≤Rprot ≤65kΩ.
Recommended values: Rprot =10kΩ .
O
17/34
Application information
VN920
P2PAK maximum demagnetization energy (VCC = 13.5V)
3.4
Figure 20. P2PAK maximum turn-off current versus inductance
ILMAX (A)
100
A
B
C
10
)
s
(
ct
u
d
o
t
e
l
o
1
0.01
0.1
r
P
e
s
b
O
1
10
100
L(mH)
)
(s
t
c
u
A: Tjstart = 150°C single pulse
B: Tjstart = 100°C repetitive pulse
d
o
r
C: Tjstart = 125°C repetitive pulse
P
e
t
e
l
o
bs
VIN, IL
Demagnetization
Demagnetization
Demagnetization
O
t
Note:
18/34
Values are generated with RL =0 Ω.In case of repetitive pulses, Tjstart (at beginning of each
demagnetization) of every pulse must not exceed the temperature specified above for
curves A and B.
VN920
3.5
Application information
SO-16L maximum demagnetization energy (VCC = 13.5V)
Figure 21. SO-16L maximum turn-off current versus inductance
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
A: Tjstart = 150°C single pulse
d
o
r
B: Tjstart = 100°C repetitive pulse
C: Tjstart = 125°C repetitive pulse
P
e
t
e
l
o
s
b
O
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
Note:
Values are generated with RL =0 Ω.In case of repetitive pulses, Tjstart (at beginning of each
demagnetization) of every pulse must not exceed the temperature specified above for
curves A and B.
19/34
Package and PCB thermal data
VN920
4
Package and PCB thermal data
4.1
SO-16L thermal data
Figure 22. SO-16L PC board
)
s
(
ct
u
d
o
r
P
e
Note:
Layout condition of Rth and Zth measurements (PCB FR4 area = 41mm x 48mm, PCB
thickness = 2mm, Cu thickness = 35µm, Copper areas: 0.5cm2, 6cm2).
t
e
l
o
Figure 23. SO-16L Rthj-amb Vs PCB copper area in open box free air condition
70
RTH j-amb (°C/W)
)
(s
65
s
b
O
t
c
u
60
d
o
r
55
P
e
t
e
l
o
bs
O
50
45
40
0
1
2
3
4
5
PCB Cu heatsink area (cm^2)
20/34
6
7
VN920
Package and PCB thermal data
Figure 24. SO-16L thermal impedance junction ambient single pulse
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
Equation 1: pulse calculation formula
s
b
O
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ)
where
t
c
u
δ = tp ⁄ T
d
o
r
P
e
Figure 25. Thermal fitting model of a single channel HSD in SO-16L
s
b
O
t
e
l
o
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
21/34
Package and PCB thermal data
Table 13.
VN920
SO-16L thermal parameters
Area / island (cm2)
Footprint
R1 (°C/W)
0.02
R2 (°C/W)
0.1
R3 (°C/W)
2.2
R4 (°C/W)
12
R5 (°C/W)
15
R6 (°C/W)
35
C1 (W.s/°C)
0.0015
C2 (W.s/°C)
7E-03
C3 (W.s/°C)
1.5E-02
C4 (W.s/°C)
0.14
C5 (W.s/°C)
1
P2PAK thermal data
Figure 26. P2PAK PC board
)
(s
20
5
)
s
(
ct
u
d
o
r
P
e
C6 (W.s/°C)
4.2
6
8
t
e
l
o
s
b
O
t
c
u
d
o
r
P
e
s
b
O
t
e
l
o
Note:
22/34
Layout condition of Rth and Zth measurements (PCB FR4 area = 60mm x 60mm, PCB
thickness = 2 mm, Cu thickness = 35µm , Copper areas: 0.97cm2, 8cm2).
VN920
Package and PCB thermal data
Figure 27. P2PAK Rthj-amb Vs. PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
)
s
(
ct
35
u
d
o
r
P
e
30
0
2
4
6
t
e
l
o
8
10
PCB Cu heatsink area (cm^2)
)
(s
s
b
O
Figure 28. P2PAK thermal impedance junction ambient single pulse
ZTH (°C /W)
1000
100
t
c
u
d
o
r
0.97 cm2
P
e
s
b
O
t
e
l
o
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
Time (s)
10
100
1000
23/34
Package and PCB thermal data
VN920
Equation 2: pulse calculation formula
Z
THδ
= R
TH
⋅ δ+Z
THtp
( 1 – δ)
where δ = tP/T
Figure 29. Thermal fitting model of a single channel HSD in P2PAK
)
s
(
ct
u
d
o
r
P
e
Area/island (cm2)
R1 (°C/W)
)-
s
(
t
c
R2 (°C/W)
so
b
O
24/34
6
0.02
0.1
0.22
R4 (°C/W)
4
R5 (°C/W)
9
R6 (°C/W)
37
C1 (W·s/°C)
0.0015
C2 (W·s/°C)
0.007
C3 (W·s/°C)
0.015
C4 (W·s/°C)
0.4
C5 (W·s/°C)
2
C6 (W·s/°C)
3
ro
P
e
0.97
du
R3 (°C/W)
let
s
b
O
P2PAK thermal parameter
Table 14.
t
e
l
o
22
5
VN920
Package and packing information
5
Package and packing information
5.1
ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 30. SO-16L package dimensions
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
s
b
O
t
e
l
o
Table 15.
SO-16L mechanical data
mm.
DIM.
Min.
Typ.
A
a1
Max.
2.65
0.1
0.2
a2
2.45
b
0.35
0.49
b1
0.23
0.32
C
0.5
c1
45° (typ.)
25/34
Package and packing information
Table 15.
VN920
SO-16L mechanical data (continued)
mm.
DIM.
Min.
Typ.
Max.
D
10.1
10.5
E
10.0
10.65
e
1.27
e3
8.89
F
7.4
L
0.5
7.6
M
S
5.2
PENTAWATT mechanical data
t
c
u
d
o
r
t
e
l
o
s
b
O
26/34
r
P
e
t
e
l
o
Figure 31. PENTAWATT package dimensions
P
e
u
d
o
8° (max.)
)
(s
)
s
(
ct
1.27
s
b
O
0.75
VN920
Package and packing information
Table 16.
PENTAWATT mechanical data
mm
Dim.
Min.
Typ.
A
4.8
C
1.37
D
2.4
2.8
D1
1.2
1.35
E
0.35
0.55
F
0.8
F1
1
G
3.2
3.4
G1
6.6
6.8
H3
ete
bs
L
-O
(s)
L2
ct
L3
du
L5
o
r
P
L6
s
b
O
L7
ol
10.05
L1
Pr
u
d
o
1.4
3.6
7
10.4
10.4
17.85
15.75
21.4
22.5
2.6
3
15.1
15.8
6
6.6
M
4.5
M1
4
Diam.
)
s
(
ct
1.05
H2
e
t
e
ol
Max.
3.65
3.85
27/34
Package and packing information
VN920
P2PAK mechanical data
5.3
Figure 32. P2PAK package dimensions
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
28/34
P010R
VN920
Package and packing information
P2PAK mechanical data
Table 17.
mm
Dim.
Min.
Typ.
A
4.30
4.80
A1
2.40
2.80
A2
0.03
0.23
b
0.80
1.05
c
0.45
0.60
c2
1.17
D
8.95
10.00
e
t
e
ol
E1
8.50
e
3.20
e1
6.60
L
13.70
(s)
L2
ct
L3
du
L5
V2
Package weight
Pr
bs
-O
9.35
10.40
3.60
7.00
14.50
1.25
1.40
0.90
1.70
1.55
2.40
ro
P
e
u
d
o
8.00
E
R
)
s
(
ct
1.37
D2
t
e
l
o
Max.
0.40
0º
8º
1.40 Gr (typ)
s
b
O
29/34
Package and packing information
5.4
VN920
SO-16L packing information
Figure 33. SO-16L tube shipment (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
50
1000
532
3.5
13.8
0.6
All dimensions are in mm.
A
)
s
(
ct
Figure 34. SO-16L tape and reel shipment (suffix “TR”)
u
d
o
Reel dimensions
r
P
e
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
t
e
l
o
)
(s
t
c
u
Tape dimensions
s
b
O
1000
1000
330
1.5
13
20.2
16.4
60
22.4
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
d
o
r
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
P
e
t
e
l
o
s
b
O
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
12
1.5
1.5
7.5
6.5
2
End
Start
Top
cover
tape
No components
Components
Empty components pockets
saled with cover tape.
User direction of feed
30/34
No components
500mm min
500mm min
VN920
5.5
Package and packing information
PENTAWATT packing information
Figure 35. PENTAWATT tube shipment (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
C
50
1000
532
18
33.1
1
)
s
(
ct
All dimensions are in mm.
A
u
d
o
r
P
e
P2PAK packing information
5.6
t
e
l
o
Figure 36. P2PAK tube shipment (no suffix)
)
(s
B
t
c
u
C
od
r
P
e
s
b
O
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
50
1000
532
18
33.1
1
All dimensions are in mm.
A
t
e
l
o
s
b
O
31/34
Package and packing information
VN920
Figure 37. P2PAK tape and reel (suffix “13TR”)
REEL DIMENSIONS
All dimensions are in mm.
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
24.4
60
30.4
)
s
(
ct
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
24
4
12
1.5
1.5
11.5
6.5
2
All dimensions are in mm.
s
(
t
c
u
d
o
t
e
l
o
s
b
O
32/34
r
P
e
t
e
l
o
s
b
O
End
)-
r
P
e
u
d
o
Top
cover
tape
Start
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
500mm min
VN920
6
Revision history
Revision history
Table 18.
Document revision history
Date
Revision
22-Jun-2004
1
Initial release.
2
Current and voltage convention update (page 2).
Configuration diagram (top view) & suggested connections for unused
and n.c. pins insertion (page 2).
6cm2 Cu condition insertion in thermal data table (page 3).
09-Jul-2004
3
VCC - output diode section update (page 5).
Protections note insertion (page 5).
Revision history table insertion (page 24).
Disclaimers update (page 25).
03-May-2006
4
Suggested connections for unused and n.c.pins? correction (page 2).
17-Dec-2008
5
Document reformatted and restructured.
Added content, list of figures and tables.
Added ECOPACK® packages information.
Updated Figure 37.: P2PAK tape and reel (suffix “13TR”): changed
component spacing (P) in tape dimensions table from 16 mm to 12
mm.
24-Sep-2013
6
Updated Disclaimer.
07-Jul-2004
Changes
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
33/34
VN920
)
s
(
ct
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
u
d
o
r
P
e
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
t
e
l
o
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
)
(s
s
b
O
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
t
c
u
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
d
o
r
P
e
t
e
l
o
s
b
O
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
34/34
DocID7371 Rev 6
Related documents