Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Fiber Amplifiers- Raman Sérgio Stevan, Paulo André, António Teixeira, J. Prat, J. A. Lazaro, C. Bock, João Andrade © 2005, it - instituto de telecomunicações. Todos os direitos reservados. This tutorial is licensed under the Creative Commons http://creativecommons.org/licenses/by-nc-sa/3.0/ Outline Introduction Physical principle Propagation Power and Field Configurations and SETUPs Co, Counter and Bi - directional Distributed and lumped Noise and Multi Path Interference Raman fiber Lasers . E1- 2b Optical technologies 2 Jan 2006 Introduction - History 1970 –Stimulated Raman emission in optical fibers was observed by Ippen, and by Stolen et al. in 1971 [3] 70 and 80 decades – Development of new types of fiber Middle 90 decade – 1991 (first commercial EDFA amplified link) = attentions shifted until 1997 (FBG and Development of suitable high power pumps) 1999 - The first Demonstration of Raman amplification. E1- 2b Optical technologies 3 Jan 2006 Raman Optical Amplifiers Based on fiber Non-Linear effects (larger pump power required) http://www.research.att.com/viewProject.cfm?prjID=111 E1- 2b Optical technologies 4 Jan 2006 Introduction Raman: Advantages and Disadvantages Occurs in all fiber transparency Maximum gain is shifted 13 THz from pump frequency Uses the same medium of the signal transmission Small Noise (compared with EDFA and SOA) Gain spectrum adjustable with multiple pumps (width and flatness) Gain is distributed along the fiber span Raman Gain occurs only at high pump powers Low efficiency in typical fibers E1- 2b Optical technologies 5 Jan 2006 Stokes and Anti-Stokes Effects E1- 2b Optical technologies 6 Jan 2006 Stimulated Raman Scattering (SRS) Islam M.N., "Raman Amplifiers for Telecommunication 1", 2004 (R.H. Stolen ,“Fundamentals of Raman Amplification in Fibers”) E1- 2b Optical technologies 7 Jan 2006 Normalized Raman Gain (SMF) Islam M.N., "Raman Amplifiers for Telecommunication 1", 2004 (R.H. Stolen ,“Fundamentals of Raman Amplification in Fibers”) E1- 2b Optical technologies 8 Jan 2006 Raman Gain X type of optic fiber Clifford Headley, Govind P. Agrawal, “Raman Amplification in fiber optical communication systems,” Elsevier academic press , 2005 E1- 2b Optical technologies 9 Jan 2006 Signal and Pump : Polarization M.N. Islam “Raman amplifiers for telecommunications” ,IEEE Journal of Selected Topics in Quantum Electronics, 8, 548-559 (2002) E1- 2b Optical technologies 10 Jan 2006 Lumped or Distributed Raman Amplifier Lumped: Distributed: E1- 2b Optical technologies 11 Jan 2006 Distributed Raman Amplifier (DRA) M.N. Islam “Raman amplifiers for telecommunications” , IEEE Journal of Selected Topics in Quantum Electronics, 8, 548-559 (2002). E1- 2b Optical technologies 12 Jan 2006 A Simple Raman Amplifier E1- 2b Optical technologies 13 Jan 2006 Equations – Raman Amplification - Simplified Differential Equations Ps gR Pp Ps s Ps z Aeff Pp z p gR Pp Ps p Pp s Aeff - Pump Propagation (undepleted approach) Pp c ( z ) Ppo exp( p ( L z )) Pp ( z ) Ppo exp( p z ) - Signal Propagation 1 e p z gR Ps ( z ) Ps (0) exp s z Pp (0) Aeff p e p L e p z 1 gR Ps c ( z ) Ps (0) exp s z Pp (0) A eff p E1- 2b Optical technologies 14 Jan 2006 Power Signal x pump direction CO-PROPAGATING COUNTER-PROPAGATING F. Cisternino, B. Sordo, ''State of the art and prospects for Raman amplification in long distance optical transmissions'', Exp, Vol. 2 n. 1, pp. 18-25, March 2002. E1- 2b Optical technologies 15 Jan 2006 Co-, Counter- and Bi-pumping 100% = Signal and Pump CO-PROPAGATING 0% = Signal and Pump COUNTER-PROPAGATING Intermediate values = Bidirectional pumps J. Bromage, P.J. Winzer, and R.-J. Essiambre, in Raman Amplifiers for Telecommunications, M.N. Islam, Ed., Springer, New York, 2003, Chap.15 E1- 2b Optical technologies 16 Jan 2006 Pumping Methods FORWARD BACKWARD BI DIRECTIONAL Clifford Headley, Govind P. Agrawal, “Raman Amplification in fiber optical communication systems,” Elsevier academic press , 2005 E1- 2b Optical technologies 17 Jan 2006 Power variation Equations E1- 2b Optical technologies 18 Jan 2006 Field Equation : Nonlinearities E1- 2b Optical technologies 19 Jan 2006 Nonlinearities Penalties E1- 2b Optical technologies 20 Jan 2006 Multi pump – gain Spectrum tayloring J.Bromage, J.Lightwave Technol.22,79 (2004) E1- 2b Optical technologies 21 Jan 2006 Multi pump - Flat gain S. Namiki and Y.Emori, IEEE J.Sel.Topics Quantum Electron,7,3 (2001) E1- 2b Optical technologies 22 Jan 2006 Gain (Flat) and Noise – 45km SMF (example) 1502nm 1416nm Used by permission from VPIphotonics, a division of VPIsystems E1- 2b Optical technologies 23 Jan 2006 Gain (Flat) and Noise figure – 45km SMF Bandwidth = 90nm Used by permission from VPIphotonics, a division of VPIsystems E1- 2b Optical technologies 24 Jan 2006 ASE and Noise Figure F. Cisternino, B. Sordo, ''State of the art and prospects for Raman amplification in long distance optical transmissions'', Exp, Vol. 2 n. 1, pp. 18-25, March 2002. E1- 2b Optical technologies 25 Jan 2006 Gain and Noise Figure for many pump powers Islam M.N., "Raman Amplifiers for Telecommunication 1", 2004 (C.R.S Fludger ,”Linear Noise Characteristics”) E1- 2b Optical technologies 26 Jan 2006 MPI – Multi Path Interference Clifford Headley, Govind P. Agrawal, Raman Amplification in fiber optical communication systems, Elsevier academic press , 2005 E1- 2b Optical technologies 27 Jan 2006 MPI – Multi Path Interference E1- 2b Optical technologies 28 Jan 2006 Raman Fiber Laser Resonant Cavity FBG reflectors Multi-lasers There is no coupler insertion loss Setup simpler than traditional approach which consists of multiplexing laser diodes Consequently: Smaller costs E1- 2b Optical technologies 29 Jan 2006 Spectral positions of pump, gratings and gain distribution S band C band E1- 2b Optical technologies 30 Jan 2006 L band Setup of comb Raman fiber lasers with two pumps Pump1 FBG for Pump1 Pump 2 FBG for Pump2 1430 nm 1520 nm 1460 nm 1548 nm 1529 nm 1554 nm 1535 nm 1569 nm 1570 nm Ppump1 = 1.5 W Ppump2 = 1.5 W 30km SMF E1- 2b Optical technologies 31 Jan 2006 Raman Gain composition E1- 2b Optical technologies 32 Jan 2006 Sixth-Order Cascaded Raman Amplification E1- 2b Optical technologies S.B. Papernyi and V.B. Ivanov 33 Jan 2006 Rayleigh Backscatering (Virtual mirror): Raman Fiber Laser E1- 2b Optical technologies 34 Jan 2006 Rayleigh Scattering and fiber lasing a) Multiple chaotic oscillations b) FBG inserted to Pump power = 0.8W c) FBG inserted to Pump power = 1.2W Teixeira A., Stevan Jr., S. Silveira T.; Nogueira R.; Tosi Beleffi G. M., Forin D., Curti F., “Optical Gain Characteristics of Rayleigh Backscattered Lasing in E1- 2b Optical technologies 35 Jan 2006 Several Fibre Types”, NOC 2005-07-07 Hybrid Amplification with Raman EDFA: population inversion Raman: bandwidth control Islam M.N., Raman Amplifiers for Telecommunications 2:, Sub- Systems and Systems, Springer , 2004 (Cap.13 Hybrid EDFA/ Raman Amplifiers, Hiroji Masuda) E1- 2b Optical technologies 36 Jan 2006 Hybrid Amplification with Raman 22 dBm 11dBm 22 dBm Islam M.N., Raman Amplifiers for Telecommunications 2:, Sub- Systems and Systems, Springer , 2004 (Cap.13 Hybrid EDFA/ Raman Amplifiers, Hiroji Masuda) E1- 2b Optical technologies 37 Jan 2006 Hybrid Amplification with Raman Hybrid EDFA/Raman Bandwidth can be tailored ~80nm Lower NF than EDFA separate Islam M.N., Raman Amplifiers for Telecommunications 2:, Sub- Systems and Systems, Springer , 2004 (Cap.13 Hybrid EDFA/ Raman Amplifiers, Hiroji Masuda) E1- 2b Optical technologies 38 Jan 2006 Tellurite-based Raman Amplifier Islam M.N., Raman Amplifiers for Telecommunications 2:, Sub- Systems and Systems, Springer , 2004 (Cap.13 Hybrid EDFA/ Raman Amplifiers, Hiroji Masuda) E1- 2b Optical technologies 39 Jan 2006