Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
All images in this document is removed due to copyright restriction LECTURE NOTE MODULE OF SPECIAL SENSE AN OVERVIEW IN THE HISTOLOGICAL ASPECT Ahmad Aulia Jusuf, MD, PhD Departement of Histology Faculty of Medicine University of Indonesia Jl. Salemba Raya 6 Jakarta 2009 Introduction The special senses are also known as the sensory endings or receptors. They are the terminal of dendrites which perceive the various sensory stimuli and transmit these inputs to the central nervous system. According to the source of stimuli, these sensory receptors can be grouped into 3 groups: 1. Exteroreceptor Exteroreceptor are receptors that perceive the stimuli from the external environments. They locate near to the body surface. This group is classified into 3 subgroups a. Exteroreceptor which is a component of general somatic afferent. This receptor is sensitive to temperature, touch, pressure and pain b. Exteroreceptor which is a component of special somatic afferent. This receptor is specialized for perceiving light (sense of vision) and sound (sense of hearing) c. Exteroreceptor which is a component of special visceral afferent pathways. This receptor is specialized to smell and taste. 2. Proprioreceptors Proprioreceptors are specialized receptors, components of general somatic afferent and are located in joint capsule, tendons and intrafusal fibers within muscle. These receptors transmit sensory inputs to the central nervous which is translated into information that related to the awareness of body in space and in movement. Receptor vestibular which is located in the inner ear receives the stimuli related to motions vectors within the head. In the central nervous system the inputs are processing into the awareness of motion for corrective balance. 3. Interoreceptor Interoreceptors are specialized receptors, a component of general visceral afferent that perceives the information from within organs of the body. In this module we will focus on eye as the sense receptor of light and ear as the sense receptor of hearing. 2 EYES Eye (Fig-1) is photosensory organ of Figure-1 The Eye body that perceive the light stimuli. The light passes through the cornea, lens and several refractory structures within the orb. Light then is focused by lens on a light sensitive portion of the neural tunic of the eye, known as retina. Retina contains the photosensitive, rods and cones that change the light inputs into the visul information. The visual information then is transmitted by the optic nerve to the brain for processing. The bulb of eye is composed of Fig-2 The histological picture of the wall of eye ball three tunics (coats) 1. Fibrous layer) tunic which (sclero-cornea performs the outermost coat of the eye. This part consists of sclera and cornea. This part also receives insetions of the extrinsic muscles of the eye which are responsible for coordinated movement of the eye to gain the various visual fields. 2. Vascular tunic (uvea layer / tunica vasculosa) which performs the middle coat of the eye. This part consists of choroids, ciliary body and the iris. 3. Neural tunic which performs the innermost coat of the eye. This part consists of retina. 3 A. FIBROUS TUNIC (SCLERO-CORNEAL LAYER) (Fig-1 dan 2) The fibrous tunic performs a fibroelastic capsule that strongly keeps the shape of eye ball. This tunic is divided into two parts, the sclera and cornea. Sclera is the white part of the eye ball that performs 5/6 part of the eye ball. Cornea is a black part of eye that performs 1/6 part of eye ball. The junction area between cornea and sclera is called as limbus. SCLERA Sclera (Gk. Sclera=hard) is the white part of eye ball which is nearly devoid of blood vessels (Fig-1and 2). It is composed by the type-1 of collagen fibers that is interlaced with the network of elastic fibers. This arrangement gives form to the orb which is maintained by intraocular pressure from the aqueous humor in the anterior part and vitreous body in the posterior part. The sclera is perforated by the fibers of optic nerve in the posterior part at the lamina cribosa (Fig-2). Sclera contains the blood vessels especially at the junction between cornea and sclera, known as limbus. CORNEA (Fig-3) Figure-3 Cornea Cornea is a transparent, avascular and highly innervated structure. This part is origin from the bulging of fibrous tunic to the anterior part of eye ball. Cornea receives the nutrient by diffusion manner from the peripheral blood vessels located in the limbus and from the aqueous humor. Histologically cornea is divided into 5 layers: 1. Corneal epithelium It is a continuation of conjunctiva, consists of stratified squamous non keratinized epithelium composed of five to seven layer. The corneal epithelium is highly innervated by numerous free nerve endings. The superficial cells in corneal epithelium are rapidly turn overed by the underlying cells. The corneal epithelium also functions in transferring water and ions from the stroma into the conjunctival sac. 2. Bowman’s membrane. Bowman’s membrane is a fibrous layer which lies immediately deep to the corneal epithelium. It is composed by type I collagen fibers. 3. stroma Stroma is the thicknest layer of cornea which is composed of collagen connective tissue mostly of type 1 collagen fibers. These fibers are arranged in the parallel manner each 4 other to make a lamel liked structure. The fibroblasts are located between the collagen fibers. 4. Descement’s membrane Descement membrane is a thick basement membrane, composed by collagen fibers. 5. Corneal endothelium The corneal endotheliu is the innermost layer of cornea, formed by a simple squamous epithelial cell. The corneal endothelium synthesizes the protein that is necessary for maintaining the descement’s membrane. The cells have many pinocytic vesicles, and their membranes have sodium pumps that transports the excessive sodium ion into the anterior oculi chamber. These ions are passively followed by chloride ions and water. The excess water within stroma will be reabsorbed by endothelium to keep the stroma relatively dehydrated, a factor that contributes to maintaining the refractive quality of the cornea. LIMBUS (SCLEROCORNEAL JUNCTION) Limbus (sclerocorneal junction) (Fig-4) is the boundary of cornea and sclera. On its outer aspect there is an outer depression of stroma called as external sclera sulcus, where the gently curving sclera is continuos with the more convex cornea. On its inner aspect, there is also depression called as internal scleral sulcus, which is filled by the trabecular meshwork with its trabecular space, also known as Fontana space and canal Schlemm. On the posterior lip of the internal scleral sulcus, the scleral stroma projects toward the interior of the eye forming a small circular ridge called as scleral spur. Limbus is covered by a transition of the corneal epithelium into the epithelium of conjunctiva of the bulb. The epithelium of bulb conjunctiva is composed by the simple columnar epithelial cells with its underlying lamina propria. The stroma of limbus is performed by the unification between sclera and cornea. This stroma consists of fibrous connective tissue. Figure-4 Sclerocorneal junction (Left) and canal of Schlemm (Right) CANAL OF SCHLEMM The canal of Schlemm, a flattened vessel extends around the entire circumference of the limbus just anterior to the scleral spur. The lumen is lined by simple squamous epithelial cell. This canal will continue to the scleral plexus and finally drainages to the plexus of scleral vein. 5 B. TUNICA VASCULOSA / UVEA (L. Uva= grape) (Fig-2 and 5) Figure-5 Tunica vasculosa The vascular middle tunic of the eye, the tunica vasculosa (uvea) consists of three parts: the choroids, the ciliary body and the iris (Fig-2 and 5) CHOROID (Fig-5 and 6) The choroid is the richly vascularized pigmented layer of the posterior wall of the orb that is loosely Figure-6 Choroid attached to the tunica fibrosa. Choroid consist of many blood vessels and pigment cells that give the appearance of this part to be brown in color This layer is composed of collagen and elastic fibers, fibroblast, blood vessels and melanocytes. Choroid is divided into 3 layers (Fig-6): 1. Bruch’s membrane Bruch’s membrane is the innermost component of the choroid consists of a network of collagen and elastic fibers and basal lamina. This part is attached to the pigment epithelium of retina 2. The choriocapillaries This middle layer of choroid contains fenestrated capillaries that supply oxygen and nutrients to the outer layers of the retina and fovea. The capillaries are responsible to providing nutrient and oxygen to the outer part of retina 3. The choroidal stroma / vessel layer The stroma consists of large arteries and veins surrounded by collagen and elastic fibers, fibroblasts, a few smooth muscle cells, neurons of autonomic nervous system and melanocytes CILIARY BODY (Fig-7) 6 Ciliary body is the wedge-shape extension of choroid that rings the inner wall of the eye at the level of lens. It is located between ora serrata of retina and limbus. The ciliary body is composed of loose connective tissue containing numerous elastic fibers, blood vessels and melanocytes. Figure-7 Ciliary body The cilary body forms short, finger like projections, known as the ciliary processes. Fibers composed of fibrilin radiate from the ciliary processes to insert into the lens capsule, known as suspensory ligaments of the lens (zonula zinii) that anchores the lens in place. The inner surface of ciliary body is lined by the pars ciliaris of the retina, a pigmented layer of the retina, composed of two cell layers. The outer layer is composed of heavily pigmented columnar epithelium, while the inner layer is composed by non pigmented columnar epithelim. The cells in the inner layer secreted the low protein containing filtrated plasma known as humor aqueous into the posterior oculi chamber. After secreted by the ciliary body, humor aqueous is drainaged into the anterior oculi chamber from posterior oculi chamber through the papillary aperture. From the anterior chamber humor aqueous is drainage to canal of Schlemm through trabeculae space of Fontana. From canal of Schlemm, humor aqueous is drainaged to plexus of scleral vein through scleral plexus. The bulk of the ciliary body contains three bundles of smooth muscle cells called as the ciliary muscle. One bundle stretches the choroids and opens the canal of Schlemm. Two other bundles that attach to scleral spur reduce tension on the zonula zinii. As the result the lens becomes thicker and more convex. This function is known as accommodation process. In clinic, there is a condtion called as glaucoma, characterized by prolonged increasing of intraocular pressure caused by the failure of drainage of humor aqueous from the anterior chamber of the eye. If this condition is not treated it results in blindness IRIS (L. Iris = rainbow) (Fig-4 and 8) Iris is the outermost part of uvea layer, projecting from the ciliary body and forms a diaphragma in the anterior lens. Iris separates the anterior chamber from the posterior chamber of eye. The aperture between the right and left part of iris known as pupil (L pupil=little girl). Iris is composed by loose connective tissue that contains the pigment and rich with the blood vessels. The anterior surface of iris is irregular with the incomplete layer of pigmented cells and fibroblasts. The posterior surface of iris is smooth and covered by continuation of the two 7 layers of epithelium that cover the ciliary body. The surface toward to the lens contains many pigment cells that protect the passing of light directly through iris. Thus the light will be focused entering the eyes through pupils. Iris contains two kinds of smooth muscle (Fig-8) the dilatator pupillae and sphincter pupillae muscles. These two muscles control the diameter of pupil. The dilatator pupillae muscle, innervated by sympathetic nervous system, dilates the pupil whereas the sphincter puplillae musle, innervated by parasympathetic fibers of he oculomotor nerve (CN III) constricts the pupil. Figure-8 Iris (CP = constrictor pupillae muscle, DP= dilatator pupillae muscle) The abundant population of melanocytes located in the epithelium and stroma of iris influence the colour of eyes. The eyes are dark when the number of melanocytes is large, whereas they are blue when the melanocytes number is low Lens (Fig-4 dan Gb-9) Lens consists of three parts: lens capsule, subcapsular epithelium and lens fibers. The capsule of lens is a basal lamina mostly composed by type IV collagen fibers and glycoprotein. This capsule is elastic, transparent, and compaq structure. The subcapsular epithelium is located only in the anterior surface of lens, immediately deep to the lens capsule. This epithelium is composed by simple cuboidal cells. The bulk of lens is composed of long cells known as lens fibers. These cells located immediately deep to the subcapsular epithelium and lens capsule. These cells have been already loosed their nuclei and organelles. This lens fiber is filled by crystallins, the lens protein. The present of crystalline will increase the refractory index of the lens. Figure-9. Lens Lens is completely free from the blood vessel. Its nutrient is received from the humor aqueous and vitreus body. The lens is impermeable but it can be passed by the light easily. The lens is hanging to the ciliary body by suspensory ligaments of the lens known as zonula zinii. VITREOUS BODY (Fig-4 and 10) Vitreous body is a transparent, refractile gel that fills the cavity of the eyes (vitreus cavity), composed by mostly water (99%), electrolyte, collagen fibers and hyaluronate acids. In the centrale of vitreus body there is a rudimenter canal knows as canal of hyaloidea. During the fetal period this canal contains the arteri hyalodea. The vitreus body is necessary to maintain the shape and elasticity of eye ball. 8 Figure-10 Vitreus body CHAMBERS OF EYES (Fig-4) The eye contains two chambers, the anterior and posterior eye chambers. The anterior chamber is a chamber which is lined in the anterior by the posterior part of cornea and by lens, iris and the anterior surface of ciliary body. The lateral border of anterior chamber is the angle of iris or limbus which is occupied by the trabeculae meshwork that play the role in drainaging the humor aqueous to the canal of Schlemm. Posterior chamber is the chamber which is bordered by iris in the anterior and the anterior surface of lens and zonula zinii in the posterior. The lateral of this chamber is bordered by ciliary processus. The anterior and posterior chamber is filled by humor aqueous. Humor aquous is a clear, watery fluid secreted by the cilary epithelium and also produced by the diffusion process of the plasma from capillaries in the ciliary processus. This solution contains the substance that can diffuse from the blood plasma but with the low amount of protein. Humor aqueous is secreted continuously to the posterior chamber then drainages to anterior chamber through pupil. Humor aqueous then is drainaged to canal of Schlemm through the trabeculae meshwork. In normal condition the secreted solution is balanced with the excreted solution keeping the intraocular pressure to be constant at about 23 mmHg. The intraocular pressure will be increased if there is an inhibition of passing humor aqueous, known as glaucoma. If this condition is untreated the blndness will be occurred. C. RETINA (NEURAL TUNIC) (Fig 5 and 11) Retina, the innermost tunic of the eye, contains the Figure-11 Optic Cup photoreceptor cells, known as rods and cones. The retina develops from the optic cup, an evagination of the procencephalon which give rise to the primary optic vesicle, whereas the stalk of the optic cup develops to become the optic nerve. The outer wall of optic up develops to be the outer pigment layer of retina whereas the neural retina is origin from the optic cup. The optic disk (Fig-12), located on the posterior of the orb is the exit site of optic nerve. The nerve fibers in 9 this area will be joined together to form a protrusion called as papil of optic nerve. Because it does not contain the photoreceptor cells, it is insensitive to the light and is therefore called as blind spot of the retina. The papil of optic nerve contains the arteries and venous centralis which give the nutrition to the retina. The blockage of these arteries can cause the permanent blindness. Retina is also supplied by other arteries such as the cilioretina arteri. Optic nerve is not the peripheral neves but it is the tractus of nerve between the ganglion retina and midbrain. The optic nerves contain more than one thousand mielinated nerve fibers and pass through chiasma optic, supporting by neuroglia (astrosit). The meninges and subarachnoid space exists from the brain as the sheath of optic nerve. Figure-12. Optic disc (Left) and Fovea centralis (Right) Approximately 2.5mm lateral to blind spot or optic disc is a yellow pigmented zone in the retina wall called as the macula lutea (yellow spot) (Fig-12). In the center of macula lutea, at 4 mm temporal to optic disc and 0.8 mm under the meridian horizontal, there is a depression area, called as fovea centralis, where the visual activity is the greatest. Fovea centralis is specialized area of the retina containg only cones, which are packed tightly as the other layers of retina are pushed aside. The optic retina lines the choroid from the papil of optic nerve in posterior to the ora serrata in the anterior. In the histological section (Fig-13 and 14) Retina consists of 10 layers, from outside to inside: 1. Pigment epithelium 2. layers of cones and rods 3. outer limiting membrane 4. outer nuclear layer 5. outer plexiform layer 6. inner nuclear layer 7. inner plexiform layer 8. ganglion cell layer 9. optic nerve fiber layer 10. inner limiting membrane Pigment epithelium is a layer composed of cuboidal to columnar cells. The nuclei are cuboid, whereas the cytoplasms are rich with the melanin pigment. The melanin pigment functions as 10 1. Absorbing the light after it has passed through and stimulated the photoreceptors, thus preventing reflections from the tunic. 2. giving the nutrition for photoreceptor 3. storage and releasing the vitamin A 4. synthesizes the rhodopsin The rods and cones consists of two types cells of photoreceptor, the rod and cone cells which are the modification of nerve cells. This layer contains the cytoplasm of rod and cone cells. The rods are elongated specialized cells which composed of outer and inner segment, a nuclear region and a synaptic region. The outer segmentsof rod cell is cylindric in shape with the length of 28 micrometer and contains the photopigment of rhodopsin which are sensitive to the light. The terminal part of outer segment is embedded in the pigment epithelium. The inner segment of rod cell is bottle in shape with the length is 32 micrometer. Both of them have the thickness of 1.5 micrometer. The outer and inner segment is connected by a narrow neck like structure. The terminal part of inner segment has the shape like spherule called as rod spherule which synapses to the outer plexiform layer. Electrone microscopy shows that the outer segment is Figure-13 Retina composed by membraneous lamellae that are arranged in parallel manner. The rod cells are sensitive to the dim light but it is insensistive to the bright light and color. Figure-14 The ultramicroscopy structure of retina. Photoreception by rods begins with absorption of light by rhodopsin, which comprises the transmembrane protein opsin bound to cis retinal, the aldehyde form of vitamin A. Absoption of light causes isomerization of the retinal moiety which then dissociates from opsin. This bleeching yields activated opsin which facilitates binding of guanosine triphosphate (GTP) to the alpha subunit of a trimeric G protein called transducin. The resulting GTP-Gactives cyclic guanosine monophosphate phosphodiesterase, an enzyme that catalyzes the breakdown of 3’,5’-cGMP. cGMP opens Na+ channels in the plasmalemma of rod cells. During the dark phase, Na+ ions are pumps out of the inner segment and enter the outer segment of the rods through gated Na + channels. The presence of Na+ in the outer segment results in the release of neurotransmitter substance into the synapse with the bipolar cells. The light induced activation of cGMP phosphodiesterase depletes cGMP levels, consequently, the Na+ gate channels close, and the rods become hyperpolarized. This event results in the inhibition of neurotransmitter release into the 11 synapse with the bipolar cells. During the next dark phase the level of cGMP is regenerated, the Na+ion channels are reopened and ion flow resumes as before. Light induced hyperpolarization causes the signal to be transmitted through various cell layers to the ganglion cells where the signal generates an action potential along the axons to the brain. The structure of cone cells are similar to the rod cells, however its apical terminal of outer segment is shaped more like a cone than a rod. The nuclei of cone cells are bigger than rod cells. The inner segment of cone has the shape like bottle with the cone pedicle at its terminal part. The cone cells are activated by bright light and produce greater visual activity than that of rod cells. There are 3 types of cones each containing a different variety of photopigment iodopsin. Each variety of iodopsin has amaximum sensitivity to red, green and blue. External limiting membrane is not a membrane but it is a zonulae adherentes between Muller cells and photoreceptor. Outer nuclear layer consists of the nuclei of rod and cone cells. Outer plexiform layer is a synapse between axons of rod and cone cells with dendrites of bipolar and horizontal cells. Inner nuclear layer consist of the nuclei and body of bipolar, horizontal, amacrine and Muller cells. Axon of bipolar cells pass vertically into the inner plexiform layer and synapses to the dendrites of ganglion cells. The horizontal cells have the body bigger than bipolar cells. Its dendrite synapses to cone pedicles. The amacrine cells have the shape like plump fruit with one processus toward to the inner plexiform layer and make synapse with several ganglion cells. Muller cells, also called as retinal gliocytes, have the giant size with the nuclei located in the inner nuclear layer. The cytoplasm processes of Muller cells pass toward to the external and internal limitans layer. The processes of amacrine, bipolar and ganglion cells are intermingled in the inner plexiform layer. Axodendritic synapses between axons of bipolar cells and dendrites of ganglion cells are also located in this layer. Ganglion layer consists of body and nuclei of ganglion cells. Ganglion cells is the large cells similar to the neuronal cells in the brain which have the Nissl bodies. Axons of these neurons pass to the nerve fiber layer. Hyperpolarization of the rods and cones activates the ganglion cells, which then generate an action potential that is passed to the brain via visual relay system. Optic nerve fiber layer is formed by unmyelinated axons of the ganglion cells. The inner lmiting membrane is the basal laminae of the Muller cells that separates the retina from the vitreus body. REFRACTORY MEDIA 12 The refractory media is the transparant structures which is passed by the light to reach the retina. The components of refraction media are cornea, anterior and posterior chamber of eye, lens and vitreus body. THE ACCESSORY STRUCTURES OF EYE The eye is located in the bone space that opens to the anterior. This anterior cleft is covered by superior and inferior eyelids that meet in the center, called as palpebral fissure. The transparent mucous membrane, known as the conjunctiva, lines the inner surface of the eyelid and it is called as palpebral conjunctiva. The accessory structures of the eye consist of palpebrae, conjunctiva and lacrimal glands. THE EYELIDS The eyelids are formed as folds of skin that cover the anterior surface of the eye. The eyelids consists of skin in the outer part, fibrous connective tissue (tarsus) and sebaceous gland (Meibomian) in the middle part and mucose membrane in the inner part. Stratified squamous epithelium of skin covers their external surface whereas at the palpebral fissure, palpebral conjunctiva covers the inner surface. Sweat glands are located in the skin of the eyelids, as are fine hairs and sebaceous glands. The dermis of eyelids is thinner than in most skin, contains numerous elastic fibers and is without fat. Dermis also contains the skeletal muscle, orbicularis oculi muscle. The margins of the eyelids contain eyelashes arranged in row of three or four, but they are without arrector pili muscle. Modified sweat glands called as glands of Moll, form a simple spiral before opening into the eyelash follicles. The other smaller modified sebaceous glands, the glands of Zeiss are associated with eyelashes and secrete their product into the eyelash follicles The eyelids are supported by a framework of tarsal plates Meibomian glands, modified sebaceous glands located in the tarsus of each lid, open on the free edge of the lid. The oily substance secreted by these glands becomes incorporated into the tear film and impedes evaporation of the tears. In the posterior of secreted duct of Meibomian glands there is a continuation of orbicularis oculi muscle known as ciliary muscle of Riolani. Figure-15 Palpebra (Eyelids) CONJUNCTIVA (Fig-15) Conjunctiva is a transparant mucous membrane, lines the inner surface of the eyelids (known as palpebral conjunctiva) and covers the sclera of anterior portion of the eye (bulbar 13 conjunctiva). Conjunctiva is composed of a stratified columnar epithelium that contains goblet cells overlying a basal lamina and a lamina propria composed of loose connective tissue. Sectretion of goblet cells become a part of the tear film, which aids in lubricating and protecting the epithelium of anterior eye. At the corneoscleral junction, where the cornea begins, the conjunctiva continues as the strafied squamous corneal epithelium and is devoid of goblet cells. Conjunctivitis is an inflammation of the conjunctia usually associated with hyperemia and a discharge. It may be caused by a number of bacterial agents, viruses, allergens and parasitic organisms. LACRIMAL GLANDS (Fig-16) The lacrimal glands lies in the lacrimal fossa located within orb, superior and lateral to the orb. The shape of lacrimal gland is like almond, a serous compound tubuloalveolar gland that resembles the parotis glands. Myoepithel completely surround the secretory portions. The gland secretes its product through 10-15 excretory duct to the lateral portion of superior conjunctival fornix. Figure-16 Lacrimal glands Lacrimal fluid (tears) is composed mostly of water. This sterile fluid, containing lysozyme, an antibacterial agent, passes through the secretory duct to enter the conjunctival sac. The upper eyelids, by blinking, wash the tears over the anterior portion of sclera and cornea, thus keeping them moist and protect them from dehydration. The lacrimal fluid is wiped in a medial direction and enters the lacrimal puncta, an aperture located in each of the medial margins of superior and inferior eyelids. The puncta of each eyelid leads directly to lacrimal canaliculi, which join into a common conduit that leads to the lacrimal sac. The wall of the lacrimal canaliculi are lined by stratified squamous epithelium. The lacrimal sac is the dilated superior portions of the nasolacrimal duct. It is lined by psuedostratified ciliated columnar epithelium. The inferior continuation of the lacrimal sac is the nasolacrimal duct, also lined by pseudostarfied ciliated columnar epithelium. This duct carries the lacrimal fluid into the inferior meatus located in the floor of the nasal cavity. TELINGA PENDAHULUAN Telinga merupakan organ pendengaran sekaligus juga organ keseimbangan. Telinga terdiri atas 3 bagian yaitu telinga luar, tengah dan dalam (Gb-1). Gelombang suara yang diterima oleh telinga luar di ubah menjadi getaran mekanis oleh membran timpani. Getaran ini kemudian di 14 perkuat oleh tulang-tulang padat di ruang telinga tengah (tympanic cavity) dan diteruskan ke telinga dalam. Telinga dalam merupakan ruangan labirin tulang yang diisi oleh cairan perilimf yang berakhir pada rumah siput / koklea (cochlea). Di dalam labirin tulang terdapat labirin membran tempat terjadinya mekanisme vestibular yang bertanggung jawab untuk pendengaran dan pemeliharaan keseimbangan. Rangsang sensorik yang masuk ke dalam seluruh alat-alat vestibular diteruskan ke dalam otak oleh saraf akustik (N.VIII). TELINGA LUAR Telinga luar terdiri atas daun telinga (auricle/pinna), liang telinga luar (meatus accusticus externus) dan gendang telinga (membran timpani) (Gb-1). Daun telinga /aurikula (Gb-2) disusun oleh tulang rawan elastin yang ditutupi oleh kulit tipis yang melekat erat pada tulang rawan. Dalam lapisan subkutis terdapat beberapa lembar otot lurik yang pada manusia rudimenter (sisa perkembangan), akan tetapi pada binatang yang lebih rendah yang mampu menggerakan daun telinganya, otot lurik ini lebih menonjol. Liang telinga luar (Gb-1 dan Gb-3) merupakan suatu saluran yang terbentang dari daun telinga melintasi tulang timpani hingga permukaan luar membran timpani. Bagian permukaannya mengandung tulang rawan elastin dan ditutupi oleh kulit yang mengandung folikel rambut, kelenjar sebasea dan modifikasi kelenjar keringat yang dikenal sebagai kelenjar serumen. Sekret kelenjar sebacea bersama sekret kelenjar serumen merupakan komponen penyusun serumen. Serumen merupakan materi bewarna coklat seperti lilin dengan rasa pahit dan berfungsi sebagai pelindung. Membran timpani (Gb-4) menutup ujung dalam meatus akustiskus eksterna. Permukaan luarnya ditutupi oleh lapisan tipis epidermis yang berasal dari ectoderm, sedangkan lapisan sebelah dalam disusun oleh epitel selapis gepeng atau kuboid rendah turunan dari endoderm. Di antara keduanya terdapat serat-serat kolagen, elastis dan fibroblas. Gendang telinga menerima gelombang suara yang di sampaikan lewat udara lewat liang telinga luar. Gelombang suara ini akan menggetarkan membran timpani. Gelombang suara lalu diubah menjadi energi mekanik yang diteruskan ke tulangtulang pendengaran di telinga tengah. TELINGA TENGAH (Gb-1) Telinga tengah atau rongga telinga adalah suatu ruang yang terisi udara yang terletak di bagian petrosum tulang pendengaran. Ruang ini berbatasan di sebelah posterior dengan ruang-ruang udara mastoid dan disebelah anterior dengan faring melalui saluran (tuba auditiva) Eustachius. 15 Epitel yang melapisi rongga timpani dan setiap bangunan di dalamnya merupakan epitel selapis gepeng atau kuboid rendah, tetapi di bagian anterior pada pada celah tuba auditiva (tuba Eustachius) epitelnya selapis silindris bersilia. Lamina propria tipis dan menyatu dengan periosteum. Di bagian dalam rongga ini terdapat 3 jenis tulang pendengaran (Gb-4) yaitu tulang maleus, inkus dan stapes. Ketiga tulang ini merupakan tulang kompak tanpa rongga sumsum tulang. Tulang maleus melekat pada membran timpani. Tulang maleus dan inkus tergantung pada ligamen tipis di atap ruang timpani. Lempeng dasar stapes melekat pada tingkap celah oval (fenestra ovalis) pada dinding dalam. Ada 2 otot kecil yang berhubungan dengan ketiga tulang pendengaran. Otot tensor timpani terletak dalam saluran di atas tuba auditiva, tendonya berjalan mula-mula ke arah posterior kemudian mengait sekeliling sebuah tonjol tulang kecil untuk melintasi rongga timpani dari dinding medial ke lateral untuk berinsersi ke dalam gagang maleus. Tendo otot stapedius berjalan dari tonjolan tulang berbentuk piramid dalam dinding posterior dan berjalan anterior untuk berinsersi ke dalam leher stapes. Otot-otot ini berfungsi protektif dengan cara meredam getaran-getaran berfrekuensi tinggi. Tingkap oval (Gb-4) pada dinding medial ditutupi oleh lempeng dasar stapes, memisahkan rongga timpani dari perilimf dalam skal vestibuli koklea. Oleh karenanya getaran-getaran membrana timpani diteruskan oleh rangkaian tulang-tulang pendengaran ke perilimf telinga dalam. Untuk menjaga keseimbangan tekanan di rongga-rongga perilimf terdapat suatu katup pengaman yang terletak dalam dinding medial rongga timpani di bawah dan belakang tingkap oval dan diliputi oleh suatu membran elastis yang dikenal sebagai tingkap bulat (fenestra rotundum)(Gb-4). Membran ini memisahkan rongga timpani dari perilimf dalam skala timpani koklea. Tuba auditiva (Eustachius) (Gb-1) menghubungkan rongga timpani dengan nasofarings lumennya gepeng, dengan dinding medial dan lateral bagian tulang rawan biasanya saling berhadapan menutup lumen. Epitelnya bervariasi dari epitel bertingkat, selapis silindris bersilia dengan sel goblet dekat farings. Dengan menelan dinding tuba saling terpisah sehingga lumen terbuka dan udara dapat masuk ke rongga telinga tengah. Dengan demikian tekanan udara pada kedua sisi membran timpani menjadi seimbang. TELINGA DALAM (Gb-1 dan Gb-5) Telinga dalam adalah suatu sistem saluran dan rongga di dalam pars petrosum tulang temporalis. Telinga tengah di bentuk oleh labirin tulang (labirin oseosa) yang di da-lamnya terdapat labirin membranasea. Labirin tulang berisi cairan perilimf sedangkan labirin membranasea berisi cairan endolimf. 16 LABIRIN TULANG (Gb-1 dan Gb-5) Labirin tulang terdiri atas 3 komponen yaitu kanalis semisirkularis, vestibulum, dan koklea tulang. Labirin tulang ini di sebelah luar berbatasan dengan endosteum, sedangkan di bagian dalam dipisahkan dari labirin membranasea yang terdapat di dalam labirin tulang oleh ruang perilimf yang berisi cairan endolimf. Vestibulum merupakan bagian tengah labirin tulang, yang berhubungan dengan rongga timpani melalui suatu membran yang dikenal sebagai tingkap oval (fenestra ovale). Ke dalam vestibulum bermuara 3 buah kanalis semisirkularis yaitu kanalis semisirkularis anterior, posterior dan lateral yang masing-masing saling tegak lurus. Setiap saluran semisirkularis mempunyai pelebaran atau ampula. Walaupun ada 3 saluran tetapi muaranya hanya lima dan bukan enam, karena ujung posterior saluran posterior yang tidak berampula menyatu dengan ujung medial saluran anterior yang tidak bermapula dan bermuara ke dalam bagian medial vestibulum oleh krus kommune. Ke arah anterior rongga vestibulum berhubungan dengan koklea tulang dan tingkap bulat (fenestra rotundum). Koklea (Gb-1, Gb-4, Gb-5 dan Gb-6) merupakan tabung berpilin mirip rumah siput. Bentuk keseluruhannya mirip kerucut dengan dua tiga-perempat putaran. Sumbu koklea tulang di sebut mediolus. Tonjolan tulang yang terjulur dari modiolus membentuk rabung spiral dengan suatu tumpukan tulang yang disebut lamina spiralis. Lamina spiralis ini terdapat pembuluh darah dan ganglion spiralis, yang merupakan bagian koklear nervus akustikus. LABIRIN MEMBRANASEA (Gb-5 dan Gb-6) Labirin membransea terletak di dalam labirin tulang, merupakan suatu sistem saluran yang saling berhubungan dilapisi epitel dan mengandung endolimf. Labirin ini dipisahkan dari labirin tulang oleh ruang perilimf yang berisi cairan perilimf. Pada beberapa tempat terdapat lembaranlembaran jaringan ikat yang mengandung pembuluh darah melintasi ruang perilimf untuk menggantung labirin membranasea. Labirin membranasea terdiri atas: 1. Kanalis semisirkularis membranasea 2. Ultrikulus 3. Sakulus 4. Duktus endolimfatikus merupakan gabungan duktus ultrikularis dan duktus sakularis. 5. Sakus endolimfatikus merupakan ujung buntu duktus endolimfatikus 6. Duktus reuniens, saluran kecil penghubung antara sakulus dengan duktus koklearis 17 7. Duktus koklearis mengandung organ Corti yang merupakan organ pendengaran. Terdapat badan-badan akhir saraf sensorik dalam ampula saluran semisirkularis (krista ampularis) (Gb-7) dan dalam ultrikulus dan sakulus (makula sakuli dan ultrikuli) (Gb-8) yang berfungsi sebagai indera statik dan kinetik. SAKULUS DAN ULTRIKULUS (Gb-5, Gb7 dan Gb-8) Dinding sakulus dan ultrikulus dibentuk oleh lapisan jaringan ikat tebal yang mengandung pembuluh darah, sedangkan lapisan dalamnya dilapisi epitel selapis gepeng sampai selapis kuboid rendah. Pada sakulus dan ultrikulus terdapat reseptor sensorik yang disebut makula sakuli dan makula ultrikuli. Makula sakuli terletak paling banyak pada dinding sehingga berfungsi untuk mendeteksi percepatan vertikal lurus sementara makula ultrikuli terletak kebanyakan di lantai /dasar sehingga berfungsi untuk mendeteksi percepatan horizontal lurus. Makula disusun oleh 2 jenis sel neuroepitel (disebut sel rambut) yaitu tipe I dan II (Gb-9) serta sel penyokong (Gb7) yang duduk di lamina basal.Serat-serat saraf dari bagian vestibular nervus vestibulo-akustikus (N.VIII) akan mempersarafi sel-sel neuroepitel ini. Sel rambut I berbentuk seperti kerucut dengan bagian dasar yang membulat berisi inti dan leher yang pendek. Sel ini dikelilingi suatu jala terdiri atas badan akhir saraf dengan beberapa serat saraf eferen, mungkin bersifat penghambat/ inhibitorik. Sel rambut tipe II berbentuk silindris dengan badan akhir saraf aferen maupun eferen menempel pada bagian bawahnya. Kedua sel ini mengandung stereosilia pada apikal, sedangkan pada bagian tepi stereosilia terdapat kinosilia. Sel penyokong (sustentakular) merupakan sel berbentuk silindris tinggi, terletak pada lamina basal dan mempunyai mikrovili pada permukaan apikal dengan beberapa granul sekretoris. Pada permukaan makula (Gb-7) terdapat suatu lapisan gelatin dengan ketebalan 22 mikrometer yang dikenal sebagai membran otolitik. Membran ini mengandung banyak badanbadan kristal yang kecil yang disebut otokonia atau otolit yang mengandung kalsium karbonat dan suatu protein. Mikrovili pada sel penyokong dan stereosilia serta kinosilia sel rambut terbenam dalam membran otolitik. Perubahan posisi kepala mengakibatkan perubahan dalam tekanan atau tegangan dalam membran otolitik dengan akibat terjadi rangsangan pada sel rambut. Rangsangan ini diterima oleh badan akhir saraf yang terletak di antara sel-sel rambut. KANALIS SEMISIRKULARIS (Gb-5) Kanalis semisirkularis membranasea mempunyai penampang yang oval. Pada permukaan luarnya terdapat suatu ruang perilimf yang lebar dilalui oleh trabekula. 18 Pada setiap kanalis semisirkularis ditemukan sebuah krista ampularis, yaitu badan akhir saraf sensorik yang terdapat di dalam ampula (bagian yang melebar) kanalis (Gb-8). Tiap krista ampularis di bentuk oleh sel-sel penyokong dan dua tipe sel rambut yang serupa dengan sel rambut pada makula. Mikrovili, stereosilia dan kinosilianya terbenam dalam suatu massa gelatinosa yang disebut kupula (Gb-8) serupa dengan membran otolitik tetapi tanpa otokonia. Dalam krista ampularis, sel-sel rambutnya di rangsang oleh gerakan endolimf akibat percepatan sudut kepala. Gerakan endolimf ini mengakibatkan tergeraknya stereosilia dan kinosilia. Dalam makula sel-sel rambut juga terangsang tetapi perubahan posisi kepala dalam ruang mengakibatkan suatu peningkatan atau penurunan tekanan pada sel-sel rambut oleh membran otolitik. KOKLEA (Gb-5, Gb-6 dan Gb- 10) Koklea tulang berjalan spiral dengan 23/4 putaran sekiitar modiolus yang juga merupakan tempat keluarnya lamina spiralis. Dari lamina spiralis menjulur ke dinding luar koklea suatu membran basilaris. Pada tempat perlekatan membran basilaris ke dinding luar koklea terdapat penebalan periosteum yang dikenal sebagai ligamentum spiralis. Di samping itu juga terdapat membran vestibularis (Reissner) yang membentang sepanjang koklea dari lamina spiralis ke dinding luar. Kedua membran ini akan membagi saluran koklea tulang menjadi tiga bagian yaitu 1. Ruangan atas (skala vestibuli) 2. Ruangan tengah (duktus koklearis) 3. Ruang bawah (skala timpani). Antara skala vestibuli dengan duktus koklearis dipisahkan oleh membran vestibularis (Reissner). Antara duktus koklearis dengan skala timpani dipisahkan oleh membran basilaris. Skala vesibularis dan skala timpani mengandung perilimf dan di dindingnya terdiri atas jaringan ikat yang dilapisi oleh selapis sel gepeng yaitu sel mesenkim, yang menyatu dengan periosteum disebelah luarnya. Skala vestibularis berhubungan dengan ruang perilimf vestibularis dan akan mencapai permukaan dalam fenestra ovalis. Skala timpani menjulur ke lateral fenestra rotundum yang memisahkannya dengan ruang timpani. Pada apeks koklea skala vestibuli dan timpani akan bertemu melalui suatu saluran sempit yang disebut helikotrema. Duktus koklearis berhubungan dengan sakulus melalui duktus reuniens tetapi berakhir buntu dekat helikotrema pada sekum kupulare. Pada pertemuan antara lamina spiralis tulang dengan modiolus terdapat ganglion spiralis yang sebagian diliputi tulang. Dari ganglion keluar berkas-berkas serat saraf yang menembus tulang lamina spiralis untuk mencapai organ Corti. Periosteum di atas lamina spiralis menebal 19 dan menonjol ke dalam duktus koklearis sebagai limbus spiralis. Pada bagian bawahnya menyatu dengan membran basilaris. Membran basilaris yang merupakan landasan organ Corti dibentuk oleh serat-serat kolagen. Permukaan bawah yang menghadap ke skala timpani diliputi oleh jaringan ikat fibrosa yang mengandung pembuluh darah dan sel mesotel. Membran vestibularis merupakan suatu lembaran jaringan ikat tipis yang diliputi oleh epitel selapis gepeng pada bagian yang menghadap skala vestibuli. DUKTUS KOKLEARIS (Gb-5, Gb-6 dan Gb-10) Epitel yang melapisi duktus koklearis beragam jenisnya tergantung pada lokasinya, diatas membran vestibularis epitelnya gepeng dan mungkin mengandung pigmen, di atas limbus epitelnya lebih tinggi dan tak beraturan. Di lateral epitelnya selapis silindris rendah dan di bawahnya mengandung jaringan ikat yang banyak mengandung kapiler. Daerah ini disebut stria vaskularis dan diduga tempat sekresi endolimf. ORGAN CORTI (Gb-10 dan Gb-11) Organ Corti terdiri atas sel-sel penyokong dan sel-sel rambut. Sel-sel yang terdapat di organ Corti adalah 1. Sel tiang dalam merupakan sel berbentuk kerucut yang ramping dengan bagian basal yang lebar mengandung inti, berdiri di atas membran basilaris serta bagian leher yang sempit dan agak melebar di bagian apeks. 2. Sel tiang luar mempunyai bentuk yang serupa dengan sel tiang dalam hanya lebih panjang. Di antara sel tiang dalam dan luar terdapat terowongan dalam. 3. Sel falangs luar merupakan sel berbentuk silindris yang melekat pada membrana basilaris. Bagian puncaknya berbentuk mangkuk untuk menopang bagaian basal sel rambut luar yang mengandung serat-serat saraf aferen dan eferen pada bagian basalnya yang melintas di antara sel-sel falangs dalam untuk menuju ke sel-sel rambut luar. Sel-sel falangs luar dan sel rambut luar terdapat dalam suatu ruang yaitu terowongan Nuel. Ruang ini akan berhubungan dengan terowongan dalam. 4. Sel falangs dalam terletak berdampingan dengan sel tiang dalam. Seperti sel falangs luar sel ini juga menyanggah sel rambut dalam. 5. Sel batas membatasi sisi dalam organ corti 6. Sel Hansen membatasi sisi luar organ Corti. Sel ini berbentuk silindris terletak antara sel falangs luar dengan sel-sel Claudius yang berbentuk kuboid. Sel-sel Claudius ter- 20 letak di atas sel-sel Boettcher yang berbentuk kuboid rendah. Permukaan organ Corti diliputi oleh suatu membran yaitu membrana tektoria yang merupakan suatu lembaran pita materi gelatinosa. Dalam keadaan hidup membran ini menyandar di atas stereosilia sel-sel rambut. GANGLION SPIRALIS (Gb-6, Gb-10 dan Gb-11) Ganglion spiralis merupakan neuron bipolar dengan akson yang bermielin dan berjalan bersama membentuk nervus akustikus. Dendrit yang bermielin berjalan dalam saluran-saluran dalam tulang yang mengitari ganglion, kehilangan mielinnya dan berakhir dengan memasuki organ Corti untuk selanjutnya berada di antara sel rambut. Bagian vestibular N VIII memberi persarafan bagian lain labirin. Ganglionnya terletak dalam meatus akustikus internus tulang temporal dan aksonnya berjalan bersama dengan akson dari yang berasal dari ganglion spiralis. Dendrit-dendritnya berjalan ke ketiga kanalikulus semisirkularis dan ke makula sakuli dan ultrikuli. Telinga luar menangkap gelombang bunyi yang akan diubah menjadi getaran-getaran oleh membran timpani. Getaran-getaran ini kemudian diteruskan oleh rangkaian tulang –tulang pendengaran dalam telinga tengah ke perilimf dalam vestibulum, menimbulkan gelombang tekanan dalam perilimf dengan pergerakan cairan dalam skala vestibuli dan skala timpani. Membran timpani kedua pada tingkap bundar (fenestra rotundum) bergerak bebas sebagai katup pengaman dalam pergerakan cairan ini, yang juga agak menggerakan duktus koklearis dengan membran basilarisnya. Pergerakan ini kemudian menyebabkan tenaga penggunting terjadi antara stereosilia sel-sel rambut dengan membran tektoria, sehingga terjadi stimulasi sel-sel rambut. Tampaknya membran basilaris pada basis koklea peka terhadap bunyi berfrekuensi tinggi , sedangkan bunyi berfrekuensi rendah lebih diterima pada bagian lain duktus koklearis. Rujukan 1. Wonodirekso, S dan Tambajong J (editor) (1990), Organ-Organ Indera Khusus dalam Buku Ajar Histologi Leeson and Leeson (terjemahan), Edisi V, EGC, Jakarta, Indonesia Hal.574-583. 2. Fawcett, D.W (1994), The Ear in: A Textbook of Histology (Bloom and Fawcett), 12th edition, Chapman and Hall, New York, USA, pp. 919-941 3. diFiore, MSH (1981), Organs of Special Sense and Associated Structures, in Atlas of Human Histology, 5th edition, Lea and Febiger, Philadelphia, USA, pp.256-257. 4. Young, B and Heath, J.W. (2000), Special Sense Organs in Wheater’s Functional 21 Histology, 4th edition, Churchill Livingstone, London, UK, pp 380-405 5. Gartner, LP and Hiatt, J.L. (1997), Special Senses in: Color Textbook of Histology, W.B. Saunder Company, USA, pp. 422-442 References 1. Wonodirekso, S dan Tambajong J (editor) (1990), Organ-Organ Indera Khusus dalam Buku Ajar Histologi Leeson and Leeson (terjemahan), Edisi V, EGC, Jakarta, Indonesia Hal.538-574. 2. Fawcett, D.W (1994), The Eye in: A Textbook of Histology (Bloom and Fawcett), 12th edition, Chapman and Hall, New York, USA, pp. 872-916 3. diFiore, MSH (1981), Organs of Special Sense and Associated Structures, in Atlas of Human Histology, 5th edition, Lea and Febiger, Philadelphia, USA, pp.248-256. 4. Young, B and Heath, J.W. (2000), Special Sense Organs in Wheater’s Functional Histology, 4th edition, Churchill Livingstone, London, UK, pp 380-405 5. Gartner, LP and Hiatt, J.L. (1997), Special Senses in: Color Textbook of Histology, W.B. Saunder Company, USA, pp. 422-442 22