* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 1 Forthcoming in M. Massimi and J.W. Romeijn (eds.), European
Survey
Document related concepts
Transcript
ForthcominginM.MassimiandJ.W.Romeijn(eds.),EuropeanPhilosophyof ScienceAssociation(EPSA15),Dordrecht:Springer. Propensities,Probabilities,andExperimentalStatistics 1 5,169words MauricioSuárez DepartmentofLogicandPhilosophyofScience, ComplutenseUniversityofMadrid,28040Madrid,Spain Email:[email protected] 1. PluralismaboutObjectiveProbability 2. ReductiveAnalysesofChance 3. AgainsttheIdentityThesis 4. ChanceAssumptionsinStatisticalModelling 5. SavingtheStatisticalPhenomena 6. Conclusion Abstract:Idefendathree-foldformofpluralismaboutchance,involvinga tripartitedistinctionbetweenpropensities,probabilities,andfrequencies.The argumenthasanegativeandapositivepart.Negatively,Iargueagainstthe identitythesisthatinformscurrentpropensitytheories,whichalreadysuggests theneedforatripartitedistinction.Positively,Iarguethatthatatripartite distinctionisimplicitinmuchstatisticalpractice.Finally,Iapplyawell-known 1IthankaudiencesattheBSPS2015conferenceinManchesterandtheEPSA15 conferenceinDusseldorffortheircommentsandreactions.Thanksalsotothe othermembersofthesymposiumpanelatEPSA15:LukeGlynn,AidanLyon,and PhilipDawid,aswellastwoanonymousreferees.Researchtowardsthispaperwas fundedbyaMarieCuriepersonalgrantfromtheEuropeanCommission(FP7PEOPLE-2012-IEF:Projectnumber329430),andresearchprojectFFI2014-57064PfromtheSpanishGovernment(MinistryofEconomicsandCompetitiveness). 1 frameworkinthemodellingliteratureinordertocharacterizethesethreeseparate conceptsfunctionallyintermsoftheirrolesinmodellingpractice. Keywords:chance,propensities,probability,statistics,modelling 1.PluralismaboutObjectiveProbability RudolfCarnap(1945,1950)wasoneofthefirstanalyticalphilosophersof sciencetoopenlydefendandpromotetheviewthatthereisnotjustonekindof probabilitybutavarietyofkinds;andcorrespondinglynotjustone“probability” concept,butapluralityofconcepts.Carnap’spluralismwasmodest:having rejectedoneconcept,hesettledforthenextnumberup,namelytwoconcepts,so minimizingthevarietyasmuchaspossible.Hecharacteristicallyreferredtothese twoconceptsbymeansofindexes,asprobability1andprobability2.Probability1is applicabletotheconfirmationoftheoriesbyempiricalevidence,andmore particularlytotheconfirmationoftheoreticalsentencesbyso-calledprotocol sentences.Thuswesaythataparticulartheoryismoreorlessprobableinthelight ofevidence;andthatitismoreorlessprobablethansomecompetitorinthelight ofsuchevidence;andwemayevenhavereasontoassertthatitsdegreeof confirmation,orprobability,is0.9orsomeothersuchvalueintherealunit interval.Thefirsttypeofprobabilityisthusnotamindorlanguageindependent featureoftheworld.Itisratherafeatureorourtheoriesorlinguisticdescriptions oftheworld.Inotherwordstheterm“probability1”belongsinwhatCarnapcalled theformalmodeofspeech(Carnap,1935/37). Thesecondkindofprobability,or“Probability2”,isbycontrastamindor languageindependentobjectivefeatureoftheworld.Itdependsonthewaythe worldisconstitutedandwhatthefactsare,regardlessofourlanguage,cognitiveor mentalstates,beliefs,attitudesorabilities.Inotherwords,“probability2”isaterm thatbelongsinthematerialmodeofspeech,andappearsinordinarydescriptions oftheobjectiveprobabilitiesorchancesofparticularevents.Sciencemerely extendsthisordinaryuseoflanguageinordertodescribeparticularphenomena asstochasticbymeansofstatisticalorprobabilisticmodels.Thestatements 2 regarding“probabilities”thatappearinscientificmodels–inphysicsand elsewhere–arethereforeallprimafacie“probability2”statements. Carnapwentontoassociatethesestatementstostatisticalfrequenciesin theempiricisttraditionofVonMises(1928)orReichenbach(1935).Wenowadays thinkthatnomerestatisticalinterpretationof,say,thequantumstatevector,or theprobabilitiesthatitentails,canbemadetowork.However,forCarnapthe fortuneofafrequencyinterpretationofobjectiveprobabilityisamatterof secondaryimportance–andhewasinfactacutelycriticalofsomekeyaspectsin Reichenbach’sempiricistaccount.Carnap’smainconcernwasnottodefend frequencies,butgenuineobjectiveprobabilities.Andwhilehisparticularcontrast betweenlogicalandfrequencyconceptsofprobabilitydidnotperhapssucceed well,theoveralltwo-foldpluralismdid.Thustwentyyearson,wefindIanHacking (1975)drawingasimilartwo-folddistinctionbetweensubjectiveandobjective aspectsofprobability.Morerecentworkinthephilosophyofprobability(e.g. Gillies,2000)ifanythingentrenchesthiskindofpluralism,asapositivestateof thingstobecelebrated. 2.ReductiveAnalysesofChance Thephilosophyofobjectivechancehasthroughoutmuchofitshistory pursuedareductionistagenda.Somephilosophershaveattemptedtoreduce objectiveprobabilitiesorchancestofrequenciesorratiosin(virtualorreal) sequencesofexperimentaloutcomes;othershaveattemptedtoreducethemto propensities,understoodastheprobabilisticdispositionsofchancysetupsor arrangements.2Suchreductiveexercisesareatleastprimafaciecontraryto appearances.Considerafewstatementsofparadigmaticobjectivechancesas expressedinthematerialmodeofspeech: 2LewisiananalysesofchanceinthespiritofHumemayberegardedasavarietyof frequencyaccountsforthepurposesofthispaper. 3 1) Acoin’spropensitytolandheadswithacertainprobabilitywhentossed asdisplayedinalongsequenceoftosses. 2) Smoking’spropensitytocauselungcancerwithacertainprobability,as demonstratedbycontrolpopulationstatistics. 3) Thepropensityofaradioactiveatomtodecaywithacertainprobability exhibitedinexperimentsrunonthematerial. Thereareobviousdifferencesbetweenthecases.Thefirststatement describesanordinaryoreverydaychance;thesecondoneinvolvesachanceto causeaparticulareffect;andthefinalstatementreferstoaputativelyfundamental andthereforeirreduciblechanceinatomicphysics.3Neverthelessallthese statementsappearstoinvolvethreedistinctproperties:the“propensities”ofthe chancyobject;the“certainprobabilities”thatsuchpropensitiesgiveriseto;and the(finite,actual)frequenciesofthecorrespondingoutcomesobservedinan experimentaltrialwhichdisplaysuchprobabilities. Inotherwords,the“appearances”,asIshallcallthem,involvethreedistinct properties.Yet,reductiveanalysesofchance(frequencyandpropensity interpretationsofprobability)aimtoreducethemalltojustone,oratbesttwo.On thefrequencyinterpretationpropensitiesareredundantandcanbediscarded altogether;andprobabilitiescanbefullyanalysedintermsofeitherlongrun actualfrequencies,orhypotheticallimitingfrequencies.Carnapreferstosuchan identificationofprobabilitieswithfrequenciesasthe“identityconception” (Carnap,1945,p.527).Andwhilethereisdebateamongstdifferentfrequency schools,inparticularregardingthestatusandnatureofthelimitinghypothetical frequencies,theyareallagreedontheessentialfactsaboutreduction.Onanyof 3Onemayinturnwonderwhetherallbonafidechancesultimatelyreduceto physicalchances.Theanswerturnsonthethornyquestionofwhetherthe “special”sciences,andindeedordinarycognitionofmacroscopicobjectsand phenomena,ultimatelyreducetophysics.Iverymuchdoubtsuchreductionis possibleordesirable,butmyclaimsinthispaperareindependentandrequire neitherreductionismtophysicalchances,noritsdenial. 4 theseschoolsthereareonlyreallyfrequencies;everyreferencetoanyother apparentconceptinthestatementsaboveisinfactredundant. Ontheotherhandthepropensityinterpretationofprobabilitydefendedby KarlPopper(Popper,1959)notoriouslyembracedasimilar(butincompatible) identificationofprobabilitieswithpropensities,whichIhaveelsewherereferred toasthe“identitythesis”(Suárez,2013).Onthisview,thereareofcoursefinite frequenciesinactualexperimentalrunsofanyexperiment,buttheyneedhaveno limitingproperties.Probabilitiesareatanyratenottobeidentifiedwitheitherthe actualorthehypotheticallimitingfrequencies.Theyareinsteadpropensities.So, onthisaccountthereareonlyreallyfrequenciesandpropensities;anyapparent referenceinthestatementsaboveto“probability”asadistinctkindorpropertyis ultimatelyredundant. Eachofthesereductionshashadformidablechampionsthroughoutthe historyofthesubject;infactbarelyanyphilosopherofprobabilityhasfailedto attemptoneoranotherversionofthisreductionofchance.Yet,therearebynow verystrongargumentsagainstbothkindsofreduction,whichsuggestthatthe prospectsofareductionofprobabilityaredim.Ishallhereonlyreviewarguments totheeffectthatprobabilitycannotbereducedtopropensity.Butthearguments byAlanHajekandothersagainstfrequencyinterpretationsofprobabilityareat leastasconvincing.4Allthreeconcepts(propensity,probability,frequency)seem toberequiredforasatisfactoryunderstandingofobjectivechance. MymainclaiminthisessayisthatwhatCarnapcalledprobability2isnotin factamonolithicnotion.Ittooisplural,andcomposedofanarrayofthree differentconceptsholdinginterestinglycomplexrelationstoeachother.In additionIdoofcourseacceptsubjectiveprobabilitiesorcredences,andperhaps alsodistinctlogicalorepistemologicalprobabilities(confirmatoryprobabilities). Inotherwords,IverymuchshareCarnap’spragmaticpluralism,butwhereas 4SomeofHájek’sarguments(1997)relyonthewell-knownreferenceclass problems.Iamnotsointerestedinthemherebecausetheyleaveopenanyclaim regardingareductiontopropensities,andIamarguingforafulltripartite distinction. 5 Carnaptriedtominimizethepluralismbyrestrictingittotwokindsofprobability, Ifindgoodreasonsnowadaystowanttomaximizethepluralisminorderto achieveafullunderstandingofobjectivechance.Therearebothnegativeand positivereasonsformaximalpluralism.Thenegativereasonshavealltodowith thefailuresofreductiveprogrammes(section3).Thepositivereasonsare connectedwiththepresuppositionsofscientificpractice(section4) 3.AgainsttheIdentityThesis Letmebrieflyreviewtheargumentfromthephilosophyofprobability againsttheidentitythesisbetweenpropensitiesandprobabilities.5Theidentity thesishastwoparts,orhalves,whichwemayrefertoasthepropensity-toprobabilityhalfandtheprobability-to-propensityhalf.Theformerassertsthatall propensitiesare,orcanberepresentedas,probabilities.Thelatterstatesthatall probabilitiesarepropensities,orcanbeinterpretedassuch.Togethertheymake thefullclaimthatprobabilitiesandpropensitiesareextensionallyidentical. Bothpartsoftheidentitythesisareinfactfalse,asisshownbydifferent formsofwhatisknownasHumphreys’paradox.Thefalsityoftheprobability-topropensityhalfisatrivialconsequenceoftheasymmetriesofpropensities.Thisis bestunderstoodbyconsideringacausalpropensitysuchassmoking’spropensity tocauselungcancer(myexample2above).Supposeweestimateforaparticular populationtheincidenceoflungcanceramongstsmokersat1%,whichwemay writeasP(C/S)=0.01.Andsupposethatwealsohaveestimatesfortheprior probabilitiesofsmokingandlungcanceracrossthepopulationat,say,20%and 0,5%respectively(P(S)=0.2andP(C)=0.005).Wemaytheneasilyestimatethe inverseprobabilitybymeansofBayes’theorem: P ( S C) = P (C S ) P ( S ) 0.01 × 0.2 = = 0.4 . P (C ) 0.005 5ThefullargumentmaybefoundinSuárez(2013,2014)ofwhichthissectionis € anelaborationandsummary. 6 Now,thefirsthalfoftheidentitythesis(theprobability-to-propensityhalf) holdsthatprobabilitiesmaybeinterpretedaspropensities.Ifso,P(C/S)maybe understoodasthepropensityofsmokingtocausecancer.Butitfollowsfromour derivationthatP(S/C)isthenalsowell-definedat40%,soitmustalsoreceivea propensityinterpretation,whichseemsjustimpossible:Thereissimplyno propensityoflungcancertocausesmoking. Whilethissimpletypeofargumentiswellknowntheconsequencesforthe identitythesisarenotalwaysfullyappreciated.Propensitiesareasymmetricina waythatprobabilitiesarenot.Theasymmetryisrevealedmoststrikinglyinthe caseofcausalpropensities,butismoregenerallyafeatureofallpropensities whetherornotcausal.Thusacoin’spropensitytolandheads,andaradioactive atom’spropensitytodecayarealsoasymmetricinawaythatgeneratesasimilar problemfortheirBayesinverseprobabilities.Wemayhopethattheotherhalfof theidentitythesis(thepropensity-to-probabilityhalf)holdsnonetheless,andthat itisstillthecasethatallpropensitiesareprobabilities.Whilethishalfonitsown failsshortofafullreductiveanalysisforprobabilities,itisstillanaccountof propensitiesasprobabilities. However,PaulHumphreys’originalargumentdefeatsthishalfofthe identitythesisaswell.Humphreys(1985)consideredathoughtexperimentwhere, regardlessoftheoutcome,thepropensitiesofthesystemdescribedarenotand cannotberepresentedasprobabilities.Heconsideredasourceemittingone photonatatimet1,reachingahalfsilvermirrorattimet2,andbeingtransmittedat timet3.Hethenplausiblystipulatedthatthefollowingthreeclaimsholdregarding thepropensitiesofthephotoninthethoughtexperiment: i) Anyphotonthatreachesthehalfsilvermirrorhassomefinite(nonzero)propensitytobetransmitted. ii) Anyphotonthatisemittedhassomepropensitygreaterthanzerobut notonetoreachthemirror. 7 iii) Anyphotonthatisemittedandfailstoreachthemirrorhaspropensity zero(i.e.ithasnopropensity)tobetransmitted. Theseclaimsmayallberegardedasuncontroversialregardingthethought experimentathand.Theyallcertainlyseemveryplausible.Humphreysrendered theseclaimsinaconditionalprobabilityformulationthatishoweverfarfrom innocuousorobvious,asfollows: i) Pt 3 (Tt 3 It 2 & Bt1 ) = p > 0 . ii) 1 > Pt1 ( It 2 Bt1 ) = q > 0 . € iii) Pt1 (Tt 3 ¬It 2 & Bt1 ) = 0 . € € Eachoftheseformalconditionsismeanttocapturefullyeachofthe correspondingphysicalclaimsregardingthepropensitiesatworkinthethought experiment.Thisassumesthatthereisalwaysauniquerepresentationfor propensitiesintermsofconditionalprobabilities.Yet,thesethreeformal conditionsareinconsistentwiththeKolmogorovaxioms,andinparticularwiththe fourthaxiomforconditionalprobability(alsoknownastheratioanalysisof conditionalprobability). Now,thereareanumberofcaveatstoHumphreys’proof,whichIcannot discusshereinfull,butdeserveabriefmention.Firstly,theproofassumesa principleofconditionalindependencewherebypropensitiesdonotactbackwards intime: Pt1 ( It 2 Tt 3 & Bt1 ) = Pt1 ( It 2 ¬Tt 3 & Bt1 ) = Pt1 ( It 2 Bt1 ) .Theprincipleisindeed questionableingeneral,sincethereisnoreasonwhypropensitiesshouldbeany moreforward-lookingthancauses.Inotherwords,theasymmetryofpropensities € isnottheasymmetryoftime,butisratherasuigenerisasymmetry,whichmayor notcoincidewithtemporalasymmetry.Yet,inthethoughtexperimentathand,the applicationofconditionalindependenceislegitimate–inotherwordsthe propensitiesthatobtaininthethoughtexperimentareallasamatteroffact forwardlooking.Sotheproofdoesnothangonthisassumptionbeinggenerally valid. 8 Thesecondcaveatisthatrelinquishingtheratioanalysisofconditional probability(i.e.givingupontheKolmogorovcalculus,oratleastontheimplicated fourthaxiom: P ( A B) = P ( B A) P ( B) ),doesnotactuallydeliverusfromcontradiction, andcannotinfactgetusoutoftrouble.Theratioanalysisisindeeda presuppositionoftheKolmogorovcalculus,butnoothercalculithatwehavesofar € developedisinabetterpositiontoovercomeHumphreys’paradox.6 Tosumup,Humphreys‘proofisrightlywidelyunderstoodtoshowthatthe representationofpropensitiesintermsofconditionalKolmogorovprobabilitiesis flawed:Propensitiesarenotingeneralprobabilities. 4.ChanceAssumptionsinStatisticalModelling Thesecondandmainargumentforpluralismdoesnotrelyonformalissues intheaxiomatizationofprobability.Itisratherrelatedtothepracticeofstatistical modelling.Ishallarguethatthe“appearances”(i.e.thetripartitedistinction betweenpropensities,probabilities,andfrequencies)aretacitlypresupposedin muchofthismodellingpractice.Andphilosophersofscienceasithappensarewell equippedtounderstandthetripartitedistinctionaspartofanymodellingpractice –sinceitfollowsfromaninfluentialaccountofmodellingingeneral. Astatisticalmodelisoftenpresentedasapairstructure,consistingofa sampleoroutcomespaceSandasetofprobabilitydistributions,ordistribution functionsPi,definedoverthissample: 〈S,Pi 〉 .Thedomainofeachoftheprobability functionsisasubsetorpowersetoftheelementsinthesampleandtherangeof eachprobabilityfunctionisofcoursetheunitrealnumberinterval.7However,the € 6ForaverynicetreatmentofthisissueinconnectionwithRenyi’saxiomsystem, seeLyon(2013). 7Theliteratureonstatisticalmodellingislarge.Myunderstandingisinformed mainlybyCox(2006),Freedman(2009),andKrzanowski(1998),inadditionto theMcCullaghpaperdiscussedinthetext. 9 simpledefinitionhasburiedwithinitafairamountoftacitstructurethatisrarely madeexplicit.Inparticulartheselectionofthesampleordomainofastatistical modelisnotatrivialmatterandinvolvesconsiderablejudgement.Inhisinfluential (2002)paper,PeterMcCullaghshowshowanystatisticalmodelofastochastic phenomenoninvolvestwostrictlydistinctdomains:thedomainofthe phenomenoninquestion,andthedomainoftheprobabilityfunctionscontainedin themodel.Theideaisthatthephenomenonisfirstdescribedasasetof parametersΘ,inwhatmaybecalledaprepareddescription.Astatisticalmodelis thenafunctionthatmapseachparameterpointinΘontooneoftheprobability functions℘( S ) definedoverthesamplespace.Inotherwordsastatisticalmodelis functionallyamap: P : Θ →℘( S ) whichassignstoeverypoint θ t ∈ Θinthe parametersetthatrepresentsthephenomenonacorrespondingprobability € function℘θ i ( S ) definedoverthesamplespace.AsMcCullagh(2002,p.1225) € € notes:“itisimportanttodistinguishbetweenthemodelasafunction P : Θ →℘( S ) , andtheassociatedsetofdistributions℘θ i ( S ) ⊂℘( S ) ”. € € Astatisticalmodelcomprisesboththeparametersetandthesetof € probabilityfunctionsoverthesamplespace.So,implicitly,astatisticalmodelis definedovertwodistinctdomains:ΘandS.Theformerdomainappearsmerelyas asubscripttotheprobabilitydistributionfunction.Itisthelatterdomain,the sampleoroutcomespace,thatisthepropersigmafieldoverwhichthe probabilitiesaredefined.Itfollowsthenthattheprobabilitiesinastatisticalmodel arenotdefinedovertheparametersetthatrepresentsthephenomenonin question.Therelationshipbetweenthesamplespaceandtheparametersetis ratherindirect;andthemostimportantquestionforanymodellerispreciselyhow to‘convert’theparameterspacemeaningfullyintothesampleoroutcomespace. Thereisnotrivialalgorithmicprocedure:Itisratherahighlycontextualmatterof judgement,relativetotheparticularproblemathand.Iteffectivelytransformsa questionregardingthephenomenonanditscausesintoaquestionregardingthe probabilitiesinthemodel.Themodelmustofcoursebeconsistentwithknown datarelativetothephenomenon,butitishardtoseehowitwouldnotinvolve idealizationofonesortofanother.Thisisafterallonemoreinstanceof‘modelling’ 10 thephenomenainastreamlineddescription.Toquotefromthedistinguished statisticianDavidCox(2006,p.197): “Formalizationoftheresearchquestionasbeingconcernedwith aspectsofaspecifiedkindofprobabilitymodelisclearlyofcritical importance.Ittranslatesasubject-matterquestionintoaformalstatistical questionandthattranslationmustbereasonablyfaithfuland,asfaras feasible,theconsistencyofthemodelwiththedatamustbechecked.How thistranslationfromsubject-matterproblemtostatisticalmodelisdoneis oftenthemostcriticalpartofananalysis.Furthermore,allformal representationsoftheprocessofanalysisanditsjustificationareatbest idealizedmodelsofanoftencomplexchainofargument.” Themostimportantconstraintinstatisticalmodellingisthis:The derivationofthesamplespacefromtheparameterspacemustberesponsiveto thefeaturesofthephenomenon.ThefunctionthattakesfromtheparametersetΘ totheprobabilitydistribution℘θ i ( S ) isnotarbitrary,butdependssensitivelyupon thenatureofthephenomenoninquestion.Inparticular,ifthephenomenonis dynamicalthefunctionmustrespondtoitsdynamicallaws.Andifthelawsare € stochastic,thenitmustrespondtotheobjectivechancesthatappearinthoselaws. 8Sothefunctionthatyieldsthesampleoroutcomespaceofanystatisticalmodelof anindeterministicphenomenonalreadyhasbuiltintoitadependenceuponsome antecedentchances,whichappearinthephenomenonasdescribed.Themodelis thenofcoursetestedagainstexperimentsrunuponthesystemandyieldingfinite frequencies.Itthenfollowsthatatripartitedistinctionbetweenpropensities, 8Considerasarudimentaryexampletwofaircoins,eachindependentlyobeyinga binomialdistribution.Supposethatthecoinsarethenphysicallyconnectedin accordancetoadynamicallawthatimpliescorrelationsamongstthem(youcan imaginesomekindofinvisiblethreadconnectingbothtailsides).Theyare thereafteralwaystossedsimultaneouslyandmorelikelytofallonthesameside. Thesamplespaceinthestatisticalmodelforthisphenomenonmusttheninclude bothoutcomeevents(“head”and“tails”)foreachofthecoins,aswellasallthe jointevents(“heads&heads”“heads&tails”,etc).Andtheprobabilitydistribution functiondefinedinthisformalmodelmustbeconsistentwiththeseunderlying dynamicalfacts. 11 probabilities,andfrequenciesisalreadyimplicitlyassumedinthepracticeof statisticalmodelling.9 5.SavingtheStatisticalPhenomena Thestatisticalmodellingofaphenomenonthuspresupposesathree-fold distinctionbetweenthepropensitiesresponsibleforthephenomenon,the probabilitiesthatappearinthestatisticalmodelofthephenomenon,andthe (actual,finite)frequenciesintheexperimentalsequencesthattestthemodel.This tripartitedistinctioninstatisticalmodellingpracticeisanaturalconsequenceof theapplicationtostochasticphenomenaofacorrespondingtripartitedistinction inmodellingmoregenerally:BogenandWoodward’s(1988)distinctionbetween theory,phenomena,anddata.10Ontheiraccount,whichisbackedupbyanumber ofdetailedcasesstudies,themainroleofatheoryistoexplainaphenomenon;and whiletheoriescanbeconsistentwithdata,theyarenotinthebusinessof explainingorpredictingdata.Correlatively,anexperimenttypicallyyields observabledata(thatis:finite,actualrecordsofparticularobservationsor measurementoutcomes);butthephenomenonitselfcannotbesoobserved. Ratherourknowledgeofaphenomenonistheresultofanumberoflow-level inferencesthatestablishaparticularmodelforit.Theinferredphenomenonis thendescribedinthemodelandwithluckexplainedbyatheory.Itshouldbeclear thattheaccountpresupposesthatthereareindependentfunctionalrolesforeach ofthethreecomponents:theories,phenomena,anddata. Thebest-knownillustrationofthetripartitemodelthatBogenand Woodwardprovideuswithistheoldexampleofthemeltingtemperatureoflead. 9ArefereehelpfullypointsoutthatSpanos(2006)defendsasimilardistinction betweenstructuraltheorymodels,statisticalmodels,andobservationaldata,with similarconsequencesregardingtheroleof“chanceset-ups”. 10Idonottherebyendorsehereanyoftheirepistemologicalclaimsbeyondthe tripartitedistinction.Myaccountofstatisticalmodelling,forinstance,isalso consistent–atleastforthepurposesofthepresentessay–withthewidely acceptedclaimthatmodelsareautonomousrelativetoboththeoryanddata.See theessaysinMorrisonandMorgan(1999)foranarticulationanddefence. 12 11Idonotneedtoreviewtheirdiscussioningreatdetailformypurposeshere.Itis enoughtoemphasisethatthefactthatleadmeltsat327.5degreesCelsiusisnota pieceofobservabledataontheiraccount,butmayonlybeinferredfromavery complexarrayofdatabysomesophisticateddataanalysis.Thedatapointsthatare infactobservedcorrespondtosinglerecordingsofmeasurementstakenon particularsamplesofleadunderveryparticularconditions–andhencesubjectto hugevariationinexperimentaland/orsystematicerror.Thevariationissolarge infactthattheremayexistnodatapointcorrespondingtotheprecisemelting temperatureoflead.And,contrarytowhatthelogicalpositiviststhought,no theoryinsolid-statephysicsmaybeabletoexplainasingledatapoint. Thetheoryofphasetransitionsformetalsindeedexplainsthedifferent meltingtemperaturesofthedifferentmetalsintermsoftheirintermolecular forces,anditpredictsthecriticalenergyrequiredtoovercomethemolecular bondstypicalofacrystallinesolid.Butonthetripartiteaccount,itdoesnotneedto predictorexplaineachoranyparticularmeasurementrecord.Butthenthetheory isnotintendedtoeverdothat.Itisrathermeanttoaccountfor,andexplain,the onetrueclaimaboutthephenomenon,i.e.theinferredfactthatleadmelts preciselyat327,5degreesCelsius. Inotherwords,onthisaccountofmodellingpractice,thereisaclear-cut functionaldistinctionbetweentheories,modelsofphenomena,andobservable data.Thetheoriesareinthebusinessofexplainingandpredictingphenomena,not data.Thephenomenaaredescribedbymeansofmodelsthatareinturninferred fromthedatabycomplexstatisticalanalyses.Theobservabledataareusedto confirmthesemodelsofphenomenabuttheycannotdirectlybeemployedinthe confirmation(orrefutation)oftheory.Nofinitenumberofcontradictingdata pointscanrefuteatheory,especiallywhenthedatatakentogethervindicatea 11TheyderivetheexamplefromErnstNagel’s(1961)discussion.OneofBogenand Woodward’smainclaimsisthatthelogicalpositivistaccountsofexplanationand confirmationsuffersfromoversimplificationoftheempiricalcontentofscience. Thelogicalpositivistemphasison“observablephenomena”is,accordingtoBogen andWoodward,anoxymoron.Asexplainedinthetext,phenomenaareontheir accountneverobservable,butalwaystheresultofsomelowlevelgeneralizing inferences. 13 phenomenonthatiscompatiblewiththetheory.Inthistripartiteaccountthe connectionsbetweendataandtheoryarealwaysmediatedby(amodelof) phenomena. Statisticalmodellingisonetypeofscientificmodellingpractice.Soitstands toreasonthatitshouldexhibitthesamefunctionaldistinctionsthatareoperative inmodellingingeneral.Andindeeditdoes.Statisticiansdrawtherelevant distinctions,particularlywhentheyreflectupontheirpractice.Inparticular,as shownintheprevioussection,theydistinguishcarefullytheformal“statistical model”pair 〈S,Pi 〉 fromthephenomenonitself,howeverparametrizedundersome theoreticaldescription.Withsomeingenuityatheorymaybefoundthatdescribes thedynamicalpropertiesbehindthephenomenon,includingitspropensities.Ifso, € anexplanationisthusprovidedforthephenomenonasdescribedinaformal statisticalmodel–bymeansofasetofprobabilitydistributionfunctionsdefined uponanappropriatesamplespace.Thesemodelsareinturntestedagainstthe data–namelythefrequencyratiosrevealedinlongbutfinitesequencesof experimentaloutcomes.12 Radioactivedecayratesareagoodillustration.Anatom’schanceor probabilityofdecayisapropensityofthematerial,asdescribedbyatomictheory. Thetheoryinvokessuchpowersaspartoftheexplanationofthetypicalrateof decay(halflife)ofthematerial.Itdoesnottherebyexplainanyparticularatom’s eventofdecay(orotherwise).Thisisanindeterministicsingleeventthatcannot besoexplained.Andnoparticulareventofdecay(ornon-decay)canonitsown provideanyconfirmationorrefutationfororagainstatomictheory.Theonlyway datacanpossiblyimpingeontheoryisindirectlyviatheprobabilitydistribution 12Inourrudimentarytwo-coinsystemexample,thetheorythatdescribesthe dynamicsofthesystem(includingthehiddenmechanism,suchastheconnecting thread)isnotmeanttoaccountfor,orexplain,anyparticulartwo-coinoutcome.It isonlymeanttoexplaintheprobabilitydistributionthatappearsintheformal statisticalmodelforthephenomenon.Similarlynoparticularoutcomemayrefute thistheoryotherthanbycompromisingthedistributionfunctioninthemodel– forwhichmuchmorethanjustoneobservationwillcertainlybeneeded. 14 functionsinthestatisticalmodelthataccountsforthephenomenaofradioactive decay.13 7. Conclusion Ihavearguedformaximalpluralismaboutchance,byprovidingnegative andpositiveargumentsforatripartitedistinctionbetweenpropensities, probabilities,andfrequencies.Humphreys’paradoxprovidesgroundsforthe distinction,sinceitmakesitveryimplausiblethatchancesmaybereducedor analysedawayinanyfewerterms.Inaddition,Ihavepositivelydisplayed elementsinthepracticeofstatisticalmodellingrecommendingthesame distinction.Finally,Ihavearguedthatthetripartitedistinctionmakesfullsense withinaninfluentialcurrentaccountofmodellingpractice. REFERENCES Bogen,JimandWoodward,James.1988.SavingthePhenomena.ThePhilosophical Review,XCVII(3):303-352. Carnap,Rudoph.1935/1937.TheLogicalSyntaxofLanguage.KeganPaul. Carnap,Rudolph.1945.TwoConceptsofProbability.Philosophyand PhenomenologicalResearch,5(4),pp.513-532. 13Howwouldasubjectivisttrytoaccountforthesedistinctions?Onewaythat occurstomeisviaSkyrms’(1977)notionofpropensityasresilientsubjective probability.Roughly,aprobabilityisresilientifitisimmuneto(orinvariant under)furtherconditionalizationbyadmissibleevidence.Whilethistypeof stabilitystrikesmeasagoodwaytomarkoutonedifferencebetweenwhatIcall chancesandfrequencies(theformerbeingstableinawaythelatterarenot),Ido notseehowitcanpossiblyaccountfortherobustformofexplanatorypowerthatI hereascribetopropensitiesinrelationtochances. 15 Carnap,Rudolp.1950/1966.LogicalFoundationsofProbability(2nded.1966). Chicago:ChicagoUniversityPress. Cox,David.2006.PrinciplesofStatisticalInference.Cambridge:Cambridge UniversityPress. Freedman,David.2009.StatisticalModels:TheoryandPractice.Cambridge: CambridgeUniversityPress. Gillies,Donald.2000.PhilosophicalTheoriesofProbability.Routledge. Hacking,Ian.1975.TheEmergenceofProbability.Cambridge:Cambridge UniversithyPress. Hajek,Alan.1997.MisesRedux–Redux:FifteenArgumentsAgainstFinite Frequentism.Erkenntnis45:pp.209-227. Humphreys,Paul.1985.WhyPropensitiesCannotBeProbabilities.The PhilosophicalReview94:557-70. Krzanowski,Wojtek.1998.AnIntroductiontoStatisticalModelling.Chichester: WileyandSons. Lyon,Aidan.2013.FromKolmogorovtoPopper,toRényi:There’snoEscaping Humphreys’Paradox(WhenGeneralized).InChanceandTemporalAsymmetry,ed. AlastairWilson,112-125.Oxford:OxfordUniversityPress. McCullagh,Peter.2002.WhatisaStatisticalModel?TheAnnalsofStatistics30(5): 1225-1310. Morrison,MargaretandMaryMorgan.ModelsasMediators:PerspectivesonNatural andSocialScience.Cambridge:CambridgeUniversityPress. 16 Nagel,Ernst.1961.TheStructureofScience.NewYork:Harcourt,BraceandWorld. Reichenbach,Hans.1935/1949.TheTheoryofProbability:AnInquiryintothe LogicalandMathematicalFoundationsoftheCalculusofProbability.LosAngeles: CaliforniaUniversityPress. Spanos,Aris.2006.WhereDoStatisticalModelsComeFrom?Revisitingthe ProblemofSpecification.IMSLectureNotes-MonographSeries2ndLehmann Symposium–Optimality,vol.49,pp.98-119. Skyrms,Brian.1977.Resiliency,PropensityandCausalNecessity.TheJournalof Philosophy74(11):704-711. Suárez,Mauricio.2013.PropensitiesandPragmatism.TheJournalofPhilosophy 110(2):61-92. Suárez,Mauricio.2014.ACritiqueofEmpiricistPropensityTheories.European JournalforPhilosophyofScience4(2):215-231. VonMises,Richard.1928/1957.Probability,StatisticsandTruth(2nded.1957). NewYork:Dover. 17