Download + P(X = 1) - 동국대학교 OCW

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
디지털통신
Random Process
임민중
동국대학교 정보통신공학과
Minjoong Rim, Dongguk University
1
Random Process
Random Processes
Probability
• Definitions

Sample space S
-

Event
-

a single sample point or a set of sample points in the space S
Elementary event
-

the set of all possible outcomes of the experiment
a single sample point
Mutually exclusive
-
the occurrence of one events precludes the occurrence of the other event
• Axioms

0  P(A)  1 for an event A

P(S) = 1

If A and B are two mutually exclusive events, then P(AB) = P(A) + P(B)
Minjoong Rim, Dongguk University
3
Random Process
Conditional Probability
• P(B|A)

The probability of event B, given that A has occurred
P( A  B)
P( B | A) 
P( A)
P(A  B) = P(A) P(B|A)
• Bayes’ rule
P( A  B)  P( B | A) P( A)  P( A | B) P( B)
P( A | B) P( B)
P( B | A) 
P( A)
• Example: binary data transmission
Transmitted Data
0
X
Y
1

P(X = 0) = 0.6
P(X = 1) = 0.4

P(Y = 0 | X = 0) = 0.9
P(Y = 1 | X = 0) = 0.1

P(Y = 1 | X = 1) = 0.8
P(Y = 0 | X = 1) = 0.2

0
1
P(error) = P(X  Y) = P(X = 0  Y = 1) + P(X = 1  Y = 0)
= P(X = 0) P(Y = 1 | X = 0) + P(X = 1) P (Y = 0 | X = 1)
Minjoong Rim, Dongguk University
4
Received Data
= 0.6 0.1 + 0.4 0.2 = 0.14
Random Process
Random Variables - 1
• Random variable, X(A)

the function relationship between a random event, A, and a real number
• Cumulative distribution function (CDF)

Properties of CDF
FX ( x )  P( X  x )
0  FX ( x )  1
FX ( x1 )  FX ( x2 ) if x1  x2
FX ( )  0
FX ()  1
• Probability density function (PDF)

p X ( x) 
dFX ( x )
dx
P( x1  X  x2 )   p X ( x )dx
x2
Properties of PDF
x1
p X ( x)  0



Minjoong Rim, Dongguk University
5
p X ( x )dx  1
Random Process
Random Variables - 2
• Mean (Ensemble average)
X

mX  E{ X }   xpX ( x)dx
E(X)

• Variance

  V ( X )  E{( X  mx ) }   ( x  mx ) 2 p X ( x)dx
2
X
2
X

X

Relationship between variance and mean-square value
 X2  E { X 2  2mX X  m2X }
 E { X 2 }  2mX E { X }  m2X
 E { X 2 }  m2X
Minjoong Rim, Dongguk University
6
Random Process
Random Variables - 3
• Example: Rolling a dice

pdf, pmf (probability mass function)
The sum should be one
1/6
1

2
3
4
5
6
time average
cdf
Rolling a dice
...
repeatedly
increasing from 0 to 1
1
1/6
1
2
3
4
5
6
3 1 5 4 5 2 6 3 1 1 4 6 2 ...
6
2
ensemble average
3
1

E(X) =
1 (1/6) + 2 (1/6) + 3 (1/6) + 4 (1/6) + 5 (1/6) + 6 (1/6) = 3.5

V(X) =
12 (1/6) + 22 (1/6) + 32 (1/6) + 42 (1/6) + 52 (1/6) + 62 (1/6) - 3.52 = 2.9167
Minjoong Rim, Dongguk University
7
Random Process
Random Variables - 4
• Example: Uniform random variable

pdf
1/(b-a)
f(x)
area = 1
a

cdf
b
1
F(x)
a

E(X) =



V(X) =
b
xf ( x)dx   x


b
  x  m
Minjoong Rim, Dongguk University
a
1
ba
dx 
ba
2
b  a

1 b
ab 
f ( x)dx 
x
 dx 
b  a a 
2 
12
2
2
8
2
Random Process
Random Variables - 5
• Average Symbol Energy E  T s(t ) 2 dt 
0



1
0
0
1
0
0
1
1
0
E(0) = E(1) = 1/2
A
t
A 2T  ( A) 2 T
P
 A 2T
2
-A
T = symbol duration
10
11
01
10
00
01
11
3A
00
10
E(00) = E(01) = E(10)
= E(11) = 1/4
A
t
-A
-3A
A 2T  (3 A) 2 T  ( A) 2 T  (3 A) 2 T
P
 5 A 2T
4
T = symbol duration
Minjoong Rim, Dongguk University
9
Random Process
Random Variables - 6
• Average Symbol Energy
0  0
1  A
0
1
0
A
 
assuming E(0) = E(1) = 1/2
E | s |2
E(00) = E(01) = E(10) = E(11) = 1/4
0  B
1  -B
Symbol Energy = (0 + A2) / 2 = A2 / 2
00
01
10
11




C
3C
-C
-3C
11
10
00
01
-C
C
0
-B
B
Symbol Energy = ((-B)2 + B2) / 2 = B2
00
01
10
11




D
D
D
D
j 2  1
-3C
1
(1 + j)
(-1 + j)
(1 - j)
(-1 - j)
01
D
-D
00
D
3C
11
Symbol Energy = ((-3C)2 + (-C)2 + C2 + (3C)2) / 4 = 5C2
-D
10
Symbol Energy = 2D2
Minjoong Rim, Dongguk University
10
Random Process
Gaussian Random Variables - 1
• Gaussian Random Variable
 1 n2
1
p( n) 
exp    
 2
 2  
• 2-dimensional Gaussian
Random Variable
2-dimensional
amplitude
Rayleigh = Amplitude of Zero-Mean
Complex Gaussian
Complex Gaussian
Minjoong Rim, Dongguk University
11
Rayleigh distribution in amplitude
Random Process
Gaussian Random Variables - 2
• Example

Central Limit Theorem
- Probability distribution of the sum
of j statistically independent random
variables approaches the Gaussian
distribution as j  
x
y = (x1 + x2) / sqrt(2)
Minjoong Rim, Dongguk University
y = (x1 + x2 + x3) / sqrt(3)
12
y = (x1 + x2 + ... + x100) / sqrt(100)
Random Process
Gaussian Random Variables - 3
x
y = (x1 + x2 + x3 + x4) / sqrt(4)
Minjoong Rim, Dongguk University
y = (x1 + x2) / sqrt(2)
y = (x1 + x2 + x3 + x4 + x5) / sqrt(5)
13
y = (x1 + x2 + x3) / sqrt(3)
y = (x1 + x2 + ... + x100) / sqrt(100)
Random Process
Functions of Random Variables - 1
• Functions of Random Variables
Y  g( X )

Expected Value

E (Y )   g ( x) f X ( x)dx
X

• Properties
Y  aX  b
0
X 1
X: random variable
a, b: constants
E (aX  b)  aE ( X )  b
1
2X
V (aX  b)  a V ( X )
2
0
• Example

Y = 2X + 1, E(X) = 1, V(X) = 1

E(Y) = ?

V(Y) = ?
Minjoong Rim, Dongguk University
2X 1
1
14
Random Process
Functions of Random Variables - 2
• Q function
Random Variable
mean = 0

X: Gaussian RV with zero mean and unit variance

Q(x)  P(X > x)

Table is given
-

X
variance = 1
Q  x
x
0
Q(0.5) = 0.309, Q(1) = 0.159, Q(1.5) = 0.0668, Q(2) = 0.0228, Q(3) = 0.00135
Q(0) = ?, Q() = ?, Q(-) = ?, Q(-1) = ?
-1
0
• Example

Y: Gaussian random variable with mean = b and variance = a2

P(Y > T) = Q((T – b) / a)
Y  aX  b
b
Minjoong Rim, Dongguk University
T
X
Y b
a
T b 
Q

 a 
0 (T-b)/a
15
Random Process
Functions of Random Variables - 3
• Example
• Example
P(Y > 0) where Y is a Gaussian
RV with mean = -1 and variance =
22 ?
P(Y < 0) where Y is a Gaussian
RV with mean = 1 and variance =
(1/2)2 ?


1
2
2 X 1
-1
0
0
1
1
2
2X
0
X
1
-1
0
X
0
X 1
X
-2
0.5
0
X
Q(0.5) = 0.309, Q(1) = 0.159, Q(1.5) = 0.0668,
Q(2) = 0.0228, Q(3) = 0.00135
Minjoong Rim, Dongguk University
0
16
2
Random Process
Functions of Random Variables - 4
0
• Example
0
Xb

Y=X+N

X: P(X = -1) = P(X = 1) = 1/2
Yb
1

N: Gaussian RV with mean 0 and variance 1

X, N: independent
1
0  -1
1 1
Xb
X
Y
<00
>01
Yb
N
P(error) = P(Xb = 0  Yb = 1) + P(Xb = 1  Yb = 0)
P( A  B)  P( B | A) P( A)  P( A | B) P( B)
= P(X = -1  Y > 0) + P(X = 1  Y < 0)
= P(X = -1) P(Y > 0 | X = -1) + P(X = 1) P(Y < 0 | X = 1) = ?

P(Y > 0 | X = -1)
= P(X + N > 0 | X = -1)
= P(-1 + N > 0)
= P(N > 1)
= Q(1)
0.5
0.5
P(X = 1) f(Y | X = 1)
P(X = -1) f(Y | X = -1)
P(X = 1) P(Y < 0 | X = 1)
P(X = -1) P(Y > 0 | X = -1)
= 0.5 Q(1)
0.5
-1
Minjoong Rim, Dongguk University
P(Y < 0 | X = 1)
= P(X + N < 0 | X = 1)
= P(1 + N < 0)
= P(N < -1)
= Q(1)
0.5
0
0
17
= 0.5 Q(1)
1
Random Process
Correlation
• Correlation of X and Y
How much X and Y are correlated
E[XY]
Correlation can be also affected by
the mean and variance of X and Y
• Covariance of X and Y
zero mean
cov[XY ]  E[( X  E[ X ])(Y  E[Y ])]
 E[ XY ]  E[ X ]E[Y ]
• Correlation coefficient of X and Y
unit variance
 X ,Y 
cov( X , Y )
 XY
Minjoong Rim, Dongguk University
18
Uncorrelated
Random Process
Power Spectral Density - 1
• Random Process
Deterministic Signal (Fourier Transform) Frequency-domain Representation
Random Signal  Autocorrelation (Fourier Transform) Power Spectral Density
the outcome of a random experiment is mapped into a waveform that is
a function of time

• Autocorrelation
X (t )
RX ( )  E[ X (t   ) X (t )]

• Power Spectral Density

A measure of the frequency distribution of a single random process

S X ( f )   RX ( )e j 2 f  d

• Cross-correlation
X (t )
RXY ( )  E[ X (t   )Y (t )]
• Cross Spectral Density

A measure of the frequency inter-relationship between two random
processes


S XY ( f )   RXY ( )e j 2f d

Minjoong Rim, Dongguk University
19
Random Process
Y (t )
Power Spectral Density - 2
• Random process
slowly fluctuating
random process


• Autocorrelation

Rapidly fluctuating
random process

• Power spectral density
narrow bandwidth
wide bandwidth
f
f
Minjoong Rim, Dongguk University
20
Random Process
Example: Power Spectral Density - 1
Signal
Minjoong Rim, Dongguk University
Autocorrelation
21
Power Spectral Density
Random Process
Example: Power Spectral Density - 2
Signal
Minjoong Rim, Dongguk University
Autocorrelation
22
Power Spectral Density
Random Process
Related documents