Download Lecture 20. Electromagnetic Waves

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 20. Electromagnetic Waves
Outline: (Chapter 32 in the book)
Electromagnetic Waves in Free Space
Transfer of EM Energy in Space: Poynting Formalism
Today, we will consider electromagnetic waves in vacuum only!
Cell phones  ~ 0.3 m
Maxwell’s Equations
 Gauss’s Law
𝐸 βˆ™ 𝑑𝐴 =
π‘ π‘’π‘Ÿπ‘“
Different types of solutions, e.g.
𝑄𝑒𝑛𝑐𝑙
πœ€0
-
β€œCoulomb” electric fields generated
by charges at rest (𝐸 ∝ 1/π‘Ÿ 2 );
-
Spherical electromagnetic waves
generated by accelerated charges
(𝐸 ∝ 1/π‘Ÿ).
 No magnetic monopoles
𝐡 βˆ™ 𝑑𝐴 = 0
π‘ π‘’π‘Ÿπ‘“
 Faraday’s Law of electromagnetic induction
𝐸 βˆ™ 𝑑𝑙 = βˆ’
π‘™π‘œπ‘œπ‘
𝑑
𝑑𝑑
𝐡 βˆ™ 𝑑𝐴
∝ 1/π‘Ÿ 2
π‘ π‘’π‘Ÿπ‘“
 Generalized Ampere’s Law
𝐡 βˆ™ 𝑑𝑙 = πœ‡0
π‘™π‘œπ‘œπ‘
π‘ π‘’π‘Ÿπ‘“
πœ•πΈ
𝐽 + πœ–0
βˆ™ 𝑑𝐴
πœ•π‘‘
∝ 1/π‘Ÿ
πœ†
πœ€0 𝐸 2
𝑒𝐸 =
2
We’ll consider the simplest case of
waves: plane EM waves in vacuum.
2
Maxwell’s Equations in Vacuum
𝐸 βˆ™ 𝑑𝐴 = 0
π‘ž = 0, 𝐽 = 0
𝐡 βˆ™ 𝑑𝐴 = 0
Do these equations have non-trivial
(𝐸 β‰  0, 𝐡 β‰  0) solutions in vacuum?
π‘ π‘’π‘Ÿπ‘“
π‘ π‘’π‘Ÿπ‘“
𝑑
𝐸 βˆ™ 𝑑𝑙 = βˆ’
𝑑𝑑
π‘™π‘œπ‘œπ‘
π‘™π‘œπ‘œπ‘
𝐡 βˆ™ 𝑑𝑙 = πœ–0 πœ‡0
𝐡 βˆ™ 𝑑𝐴
π‘ π‘’π‘Ÿπ‘“
Yes, these solutions describe
electromagnetic waves that propagate at
the speed of light!
πœ•πΈ
βˆ™ 𝑑𝐴
πœ•π‘‘
π‘ π‘’π‘Ÿπ‘“
Maxwell’s greatest triumph: prediction of the existence of electromagnetic
waves that could travel through empty space at the speed of light and
identification of light as electromagnetic waves.
3
Plane EM Waves in Vacuum
Generation of EM waves: by accelerated charges and, thus, by AC currents.
We’ll consider the simplest case of a plane monochromatic wave.
𝐸 βˆ™ 𝑑𝐴 = 0
ensure transverse
character of EM waves
(E and B are perpendicular
𝐡 βˆ™ 𝑑𝐴 = 0
π‘ π‘’π‘Ÿπ‘“
to dA)
- provide the wave equations for
both E and B waves, e.g. plane E
and B waves that travel along +x:
𝐡 βˆ™ 𝑑𝐴 = 0
π‘ π‘’π‘Ÿπ‘“
𝐸 βˆ™ 𝑑𝐴 = 0
π‘ π‘’π‘Ÿπ‘“
π‘ π‘’π‘Ÿπ‘“
𝐸 βˆ™ 𝑑𝑙 = βˆ’
π‘™π‘œπ‘œπ‘
π‘™π‘œπ‘œπ‘
-
𝑑
𝑑𝑑
𝐡 βˆ™ 𝑑𝑙 = πœ–0 πœ‡0
p. 1058-1059
𝐡 βˆ™ 𝑑𝐴
π‘ π‘’π‘Ÿπ‘“
πœ•πΈ
βˆ™ 𝑑𝐴
πœ•π‘‘
π‘ π‘’π‘Ÿπ‘“
πœ• 2 𝐸 π‘₯, 𝑑
πœ• 2 𝐸 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
πœ• 2 𝐡 π‘₯, 𝑑
πœ• 2 𝐡 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
4
First important relationship E = c B
𝑑
𝐸 βˆ™ 𝑑𝑙 = βˆ’
𝑑𝑑
π‘™π‘œπ‘œπ‘
𝐡 βˆ™ 𝑑𝐴
π‘ π‘’π‘Ÿπ‘“
𝐸 βˆ™ 𝑑𝑙 = βˆ’π΅π‘Žπ‘
π‘™π‘œπ‘œπ‘
𝑑
𝐡
𝑑𝑑 π‘ π‘’π‘Ÿπ‘“
βˆ™ 𝑑𝐴 = -E a
E = cB !!!
Second important relationship c = 1/sqrt(πœ–0 πœ‡0 )
𝐡 βˆ™ 𝑑𝑙 = πœ‡0
π‘™π‘œπ‘œπ‘
Eac=
πœ•πΈ
π‘ π‘’π‘Ÿπ‘“ πœ•π‘‘
βˆ™ 𝑑𝐴
𝐡 βˆ™ 𝑑𝑙 = 𝐡 π‘Ž
π‘™π‘œπ‘œπ‘
𝐡 π‘Ž = πΈπ‘Ž 𝑐 πœ–0 πœ‡0
c = 1/sqrt(πœ–0 πœ‡0 )
π‘ π‘’π‘Ÿπ‘“
πœ•πΈ
πœ–0
βˆ™ 𝑑𝐴
πœ•π‘‘
In the same way: The wave equation
πœ• 2 𝐸 π‘₯, 𝑑
πœ• 2 𝐸 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
πœ• 2 𝐡 π‘₯, 𝑑
πœ• 2 𝐡 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
Phase Velocity
πœ• 2 𝐸 π‘₯, 𝑑
πœ• 2 𝐸 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
Units of 𝛼:
𝑠2
π‘š2
- general wave equation in 1D
οƒž 1/𝑣 2
πœ• 2 𝑓 π‘₯, 𝑑
1 πœ• 2 𝑓 π‘₯, 𝑑
βˆ’ 2
=0
πœ•π‘₯ 2
𝑣𝑝
πœ•π‘‘ 2
π‘₯ = 𝑣𝑝 𝑑
πœ• 2 𝑓 π‘₯, 𝑑
πœ• 2 𝑓 π‘₯, 𝑑
βˆ’π›Ό
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
Solutions:
𝑓 π‘₯, 𝑑 = 𝑓 π‘₯ βˆ’ 𝑣𝑝 𝑑
- motion of the crests (minima, etc.)
Using dimensionless units:
the wave vector π‘˜ =
the angular velocity πœ” = 2πœ‹
Phase velocity:
π‘₯ βˆ’ 𝑣𝑝 𝑑
πœ†
π‘₯ βˆ’ 𝑣𝑝 𝑑
πœ†
- phase
wavelength
2πœ‹
πœ†
𝑣𝑝
2πœ‹
= 2πœ‹π‘“
π‘˜π‘₯ βˆ’ πœ”π‘‘ = π‘π‘œπ‘›π‘ π‘‘
π‘˜π‘₯ βˆ’ πœ”π‘‘ ο‚Ί the phase
π‘˜π‘‘π‘₯ βˆ’ πœ”π‘‘π‘‘ = 0
𝑑π‘₯ πœ”
𝑣𝑝 ≑
=
𝑑𝑑 π‘˜
8
Basic Properties of Plane E.-M. Waves in Vacuum
Plane-front wave
traveling in +x direction:
𝐸 π‘₯, 𝑑 = 𝐸0 π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ 𝑗
𝐡 π‘₯, 𝑑 = 𝐡0 π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ π‘˜
in phase
π‘˜π‘Ÿ βˆ’ πœ”π‘‘ ο‚Ί the phase
π‘˜π‘Ÿ = π‘π‘œπ‘›π‘ π‘‘ - the phase front
(the surface of constant phase).
1. In vacuum, the EM waves travel at the speed of light 𝑐 =
πœ• 2 𝐸 π‘₯, 𝑑
πœ• 2 𝐸 π‘₯, 𝑑
βˆ’ πœ–0 πœ‡ 0
=0
πœ•π‘₯ 2
πœ•π‘‘ 2
1
πœ€0 πœ‡0
.
πœ• 2 𝑓 π‘₯, 𝑑
1 πœ• 2 𝑓 π‘₯, 𝑑
βˆ’ 2
=0
πœ•π‘₯ 2
𝑣𝑝
πœ•π‘‘ 2
1
𝑣𝑝 =
=𝑐
πœ€0 πœ‡0
2. The e.-m. wave in free space is a transverse wave.
𝑐 β‰ˆ 3 βˆ™ 108 π‘š/𝑠
𝐸2
𝐸×𝐡 =
π‘˜
πœ”
𝐸 and 𝐡 in the traveling e.-m. wave are perpendicular
to the direction of propagation (π‘˜).
9
Related documents