Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Techniques of Integration By Danang Mursita http://danangmursita.staff.telkomuniversity.ac.id/ Integration By Part d dx f ( x ) g( x ) f(x) d g( x ) dx g( x ) df ( x ) dx d dg(x) df(x) f ( x ) g ( x ) dx f ( x ) dx g ( x ) dx dx dx dx f(x)g(x) f(x) f ( x )g ' ( x ) dx dg(x) df(x) dx g(x) dx dx dx f ( x )g ( x ) udv uv v du g( x )f ' ( x )dx b b a a b u dv uv a http://danangmursita.staff.telkomuniversity.ac.id/ v du Trick and Tips • If the integrand has two factors ie the polynomial and the trigonometric function or transcendental function then substitute u = the polynomial • If the integrand has a factor trigonometric function and transcendental function then substitute u = the trigonometric function or u = the transcendental function http://danangmursita.staff.telkomuniversity.ac.id/ Examples Use the integration by part for calculating this integral (1). x 2cos 2x dx 1 (2). x 2 1 ex dx 0 x (3). e cos x dx 1 (4). ln(x 2) dx 1 http://danangmursita.staff.telkomuniversity.ac.id/ Trigonometric Integral We calculate integral of f(x) with integrand f(x) is represented by 1. Sinnx, cosnx 2. sinmx cosnx 3. sin (ax) cos (bx), 4. sin (ax) sin(bx), 5. cos (ax) cos (bx) 6. tanmx secnx , 7. cotmx cscnx http://danangmursita.staff.telkomuniversity.ac.id/ n n cos x dx & sin x dx 1.Let n is odd. Then – Represent cosn x = cos x cosn-1x and sinn x = sin x sinn-1x – Use sin2x + cos2x =1, d(sin x) = cos x dx and d(cos x) = - sinx dx 2.Let n is even. Then – Use cos2x = 2 cos2x – 1 = 1 – 2 sin2x or – Represent cosnx = cos x cosn-1x and sinnx = sin x sinn-1x then use integral by part for calculating this integral http://danangmursita.staff.telkomuniversity.ac.id/ Examples Calculate this integral (1). cos 3 x dx (2). 4 sin2 2x dx 0 (3). cos 4 3x dx (4). 2 sin5 x dx 0 http://danangmursita.staff.telkomuniversity.ac.id/ sin m x cos n x dx 1. n is odd, substitute u = sin x, identity : cos2x = 1 – sin2x 2. m is odd, substitute u = cos x, identity : sin2x = 1 – cos2x 3. m and n are even, use identity to reduce the powers on sin and cos, identity : sin2x = ½ ( 1 – cos 2x) and cos2x = ½ ( 1 + cos 2x) http://danangmursita.staff.telkomuniversity.ac.id/ Examples Calculate this integral (1). cos 5 x sin x dx (2). cos 4 x sin3 x dx (3). 3 4 3 sin 3x cos 3x dx 0 (4). 2 0 x x 2 2 sin cos dx 2 2 http://danangmursita.staff.telkomuniversity.ac.id/ sin ax cos bx dx , sin ax sin bx dx , cos ax cos bx dx • Use this identity sin ax cos bx 1 2 sin ax sin bx cos ax cos bx sin a b x 1 2 1 2 sin a b x cos a b x cos a b x cos a b x cos a b x http://danangmursita.staff.telkomuniversity.ac.id/ Examples Calculate this integral (1). cos 3x sin 2 x dx x (2). sin x sin dx 2 6 (3). cos2x cos4x dx 0 (4). 2 0 x sin cos xdx 2 http://danangmursita.staff.telkomuniversity.ac.id/ m n m n tan x sec x dx & cot x csc x dx 1. m = 1 and n = 0, substitute : d(cos x) = - sin x dx and d(sin x) = cos x dx 2. m = 0 and n = 1, substitute : d(sec x ) = sec x tan x dx and d(csc x ) = - csc x cot x dx 3. m > 1 and n = 0 or m = 0 and n > 1, use identity : tan2x = sec2x – 1 and cot2x = csc2x – 1 http://danangmursita.staff.telkomuniversity.ac.id/ Examples Calculate this integral (1). tan x dx 2 (5). tan x dx (2). cot x dx 3 (6). cot x dx (3). sec x dx 3 (7). sec x dx (4). csc x dx 4 (8). csc x dx http://danangmursita.staff.telkomuniversity.ac.id/ m n tan x sec x dx 1. n is even, substitute u = tan x, identity : sec2x = tan2x + 1 2. m is odd, substitute u = sec x, identity : tan2x = sec2x – 1 3. m is even and n is odd, reduce to powers of sec http://danangmursita.staff.telkomuniversity.ac.id/ m n cot x csc x dx 1. n is even, substitute u = cot x, identity : csc2x = cot2x + 1 2. m is odd, substitute u = csc x, identity : cot2x = csc2x – 1 3. m is even and n is odd, reduce to powers of csc http://danangmursita.staff.telkomuniversity.ac.id/ Examples Calculate this integral (1). tan3 x sec 4 x dx (2). cot 3 x csc3 x dx 6 (3). sec 3 x tan x dx 0 (4). 2 csc3 x cot xdx 4 http://danangmursita.staff.telkomuniversity.ac.id/ Trigonometric Substitutions • This method can be used for calculating integration with integrand has a factor of 2 2 (1). a x (2). a2 x 2 2 2 (3). x a http://danangmursita.staff.telkomuniversity.ac.id/ Trigonometric Substitutions (1). Substitute x a sin t 2 2 a x a cos t, dx a cos t dt (2). Substitute x a tan t a2 x 2 a sec t, dx a sec 2 t dt (3). Substitute x a sec t 2 2 x a a tan t, dx a sec t tan t dt http://danangmursita.staff.telkomuniversity.ac.id/ Examples 2 9 x dx (1). (3). (4). dx 2 1 x dx (1). x 3 16 x 2 dx 0 2 x (2). 4 2 (2). 2 x 2 1 x 2 1 3 x2 4 2 1 x2 dx x dx 3 (3). dx 2 2 0 4 9x 1 (4). 2 1 1 2x 2 3 2 dx 2 http://danangmursita.staff.telkomuniversity.ac.id/ Integrals involving ax2 + bx + c Integrals that involve ax2 + bx + c with b 0 can be solved by 1. Substitution u = x + b/2a, ie : ax2 + bx + c = a (x2 + b/a x) + c = a (x2 + b/a x + b2/4a2) + c – b2/4a = a ( x + b/2a)2 + c – b2/4a 2. We have a simple form au2 + d and then trigonometric substitution can be applied http://danangmursita.staff.telkomuniversity.ac.id/ Examples (1). (2). dx x 2 6x 13 x (3). 2 (4). x 2 6x 10 x3 x 2 2x 2 dx dx dx 2 4 x x 1 http://danangmursita.staff.telkomuniversity.ac.id/ Integral of Rational Function • The function f(x) = P(x)/ Q(x) is Rational Function, ie : P(x) and Q(x) are Polynomials. • Integral of f(x) which is rational function with degree of numerator, P(x) less than degree of denominator, Q(x) can be solved by the possibility of factor of the denominator, Q(x) : – Q(x) have linear factor ( repeat and non repeat factor) – Q(x) have non linear factor ( repeat and non repeat factor) http://danangmursita.staff.telkomuniversity.ac.id/ The Linear Factor 1. Q(x) = ( x – q1) ( x – q2)…(x – qn) A1 A2 An f(x) ... x q1 x q2 x qn 2. Q(x) = ( x – q1)2 ( x – q2)3. A B C D E f(x) x q1 x q12 x q2 x q22 x q23 http://danangmursita.staff.telkomuniversity.ac.id/ Examples (1). (2). (3). (4). x 2 1dx (5). dx x 2 4x 5 x 1 x 2 5x 6 2x 2 3 xx 12 x 2 4x 5 dx dx 2x 2 2x 1 x3 x 2 (6). (7). dx (8). x3 x2 x 6 x2 x 13 dx dx 2x 2 3x 3 x 13 dx http://danangmursita.staff.telkomuniversity.ac.id/ The Non Linear Factor 1. Q(x) = ( x2 + q1) ( x2 + px + q2) f(x) A Bx 2 x q1 C Dx 2 x px q2 2. Q(x) = ( x2 + q1)2 ( x2 + q2). f(x) A Bx x 2 q1 C Dx E Fx 2 q2 x 2 2 x q1 http://danangmursita.staff.telkomuniversity.ac.id/ Soal latihan • Selesaikan Integral tak tentu berikut x 2 2 x 4x 3 dx http://danangmursita.staff.telkomuniversity.ac.id/ Examples x 3 3x 2 x 9 x 2 1x 2 4 dx (2). x x 2 x 1 (1). (3). (4). 3x 2 12x 2 2 2 x 4 dx dx 4x 2 x 4 2x 3 x 2 dx http://danangmursita.staff.telkomuniversity.ac.id/ Integrals Involving Rational Exponents • The method can be used for calculating integrals with integrand has rational power of x – x1/n, substitute u = x1/n. – x1/n and x1/m, substitute u = x1/mn. • Examples : (1). x x 2 dx 8 (2). 4 (3). x4 dx x dx x 3 x http://danangmursita.staff.telkomuniversity.ac.id/ Integrals involving Rational Expressions in sin x and cos x • We will calculate the integral of f(x) in form of rational expressions in sin x and cos x • Substitute : – u = tan ½ x and du = ½ sec2 ½ x dx, - π < x < π and – sin x = sin 2( ½ x ) = 2 sin ½ x cos ½ x – cos x = cos 2( ½ x) = 1- 2sin2 ½ x sin x 2u 1 u2 cos x 1 u2 1 u2 1 u2 u ½x 1 http://danangmursita.staff.telkomuniversity.ac.id/ Examples dx (1). 1 sin x dx (2). 1 cos x 2 dx (3). sin x tan x http://danangmursita.staff.telkomuniversity.ac.id/ http://danangmursita.staff.telkomuniversity.ac.id/