Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
iÃVÀLiÊ«>ÌÌiÀÃÊ>`ÊÕÃiÊ`ÕVÌÛiÊÀi>Ã}°
6V>LÕ>ÀÞ
!CONJECTUREISANUNPROVENSTATEMENTTHATISBASEDONOBSERVATIONS
9OUUSEINDUCTIVEREASONINGWHENYOUlNDAPATTERNINSPECIlCCASES
ANDTHENWRITEACONJECTUREFORTHEGENERALCASE
!COUNTEREXAMPLEISASPECIlCCASEFORWHICHACONJECTUREISFALSE
8*Ê£
iÃVÀLiÊ>ÊÛÃÕ>Ê«>ÌÌiÀÊ
--" ÊÓ°£
-iÌV
ÊÌ
iÊiÝÌÊwÊ}ÕÀiÊÊÌ
iÊ«>ÌÌiÀ°
-ÕÌ
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
%ACHlGURELOOKSLIKETHEONEBEFOREITEXCEPT
THATITHASROTATED4HENEXTlGUREINTHE
PATTERNISSHOWNATTHERIGHT
ÝiÀVÃiÊvÀÊÝ>«iÊ£Ê
Ê £° 3KETCHTHENEXTlGUREINTHEPATTERN
Ê
8*ÊÓ
iÃVÀLiÊ>ÊÕLiÀÊ«>ÌÌiÀÊ
iÃVÀLiÊÌ
iÊ«>ÌÌiÀÊÊÌ
iÊÕLiÀÃÊÓ]Ên]ÊÎÓ]Ê£Ón]ʰʰʰÊ>`ÊÜÀÌiÊÌ
iÊ
iÝÌÊÌ
ÀiiÊÕLiÀÃÊÊÌ
iÊ«>ÌÌiÀ°
-ÕÌ
.OTICETHATEACHNUMBERINTHEPATTERNISFOURTIMESTHEPREVIOUSNUMBER
z #ONTINUETHEPATTERN4HENEXTTHREENUMBERSAREAND
'EOMETRY
#HAPTER2ESOURCE"OOK
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ
iÃVÀLiÊÌ
iÊ«>ÌÌiÀÊÊÌ
iÊÕLiÀðÊÛiÊÌ
iÊiÝÌÊÕLiÀÊÊ
Ì
iÊ«>ÌÌiÀ°
Ó° 8*ÊÎ
ΰ >iÊ>`ÊÌiÃÌÊ>ÊViVÌÕÀiÊ
>iÊ>`ÊÌiÃÌÊ>ÊViVÌÕÀiÊ>LÕÌÊÌ
iÊ«À`ÕVÌÊvÊ>ÞÊÌÜÊ``ÊÌi}iÀð
--" ÊÓ°£
-ÕÌ
-/*Ê£
&INDAPATTERNUSINGAFEWGROUPSOFSMALLNUMBERS
#ONJECTURE 4HEPRODUCTOFANYTWOODDINTEGERSISODD
-/*ÊÓ
4ESTYOURCONJECTUREUSINGOTHERNUMBERS&OREXAMPLETESTTHATITWORKS
WITHTHEPAIRSAND
Ê {° -AKEANDTESTACONJECTUREABOUTTHEPRODUCTOFANYTWOEVENINTEGERS
Ê x° -AKEANDTESTACONJECTUREABOUTTHEPRODUCTOFANEVENINTEGERANDAN
ODDINTEGER
8*Ê{
`Ê>ÊVÕÌiÀiÝ>«i
`Ê>ÊVÕÌiÀiÝ>«iÊÌÊÃ
ÜÊÌ
>ÌÊÌ
iÊViVÌÕÀiÊÃÊv>Ãi°
#ONJECTURE !LLODDNUMBERSAREPRIME
-ÕÌ
4OlNDACOUNTEREXAMPLEYOUNEEDTOlNDANODDNUMBERTHATISACOMPOSITENUMBER
4HENUMBERISODDBUTISACOMPOSITENUMBERNOTAPRIMENUMBER
ÝiÀVÃiÊvÀÊÝ>«iÊ{Ê
Ȱ &INDACOUNTEREXAMPLETOSHOWTHATTHECONJECTUREISFALSE
'EOMETRY
#HAPTER2ESOURCE"OOK
#ONJECTURE 4HEDIFFERENCEOFTWOPOSITIVENUMBERSISALWAYSPOSITIVE
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ
Answer Key
Lesson 2.1
Study Guide
1.
2. Each number is 4 more than the previous number; 17
3. Each number is 3 times the previous number; 243
4. The product of any two even integers is even.
5. The product of an even integer and an odd integer is even.
6. 2 2 5 5 23, which is not positive
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
7ÀÌiÊ`iwÊÌÃÊ>ÃÊV`Ì>ÊÃÌ>ÌiiÌð
6V>LÕ>ÀÞ
!CONDITIONALSTATEMENTISALOGICALSTATEMENTTHATHASTWOPARTS
AHYPOTHESISANDACONCLUSION
7HENACONDITIONALSTATEMENTISWRITTENINIFTHENFORMTHEhIF vPART
CONTAINSTHEHYPOTHESISANDTHEhTHENvPARTCONTAINSTHECONCLUSION
4HENEGATIONOFASTATEMENTISTHEOPPOSITEOFTHEORIGINALSTATEMENT
4OWRITETHECONVERSEOFACONDITIONALSTATEMENTSWITCHTHEHYPOTHESIS
ANDCONCLUSION
4OWRITETHEINVERSEOFACONDITIONALSTATEMENTNEGATEBOTHTHE
HYPOTHESISANDCONCLUSION
4OWRITETHECONTRAPOSITIVEOFACONDITIONALSTATEMENTlRSTWRITETHE
CONVERSEANDTHENNEGATEBOTHTHEHYPOTHESISANDTHECONCLUSION
7HENTWOSTATEMENTSAREBOTHTRUEORAREBOTHFALSETHEYARECALLED
EQUIVALENTSTATEMENTS
)FTWOLINESINTERSECTTOFORMARIGHTANGLETHENTHEYARE
PERPENDICULARLINES
8*Ê£
,iÜÀÌiÊvÕÀÊÀi>Ìi`ÊV`Ì>ÊÃÌ>ÌiiÌÃÊ
7ÀÌiÊÌ
iÊvÌ
iÊvÀ]ÊÌ
iÊVÛiÀÃi]ÊÌ
iÊÛiÀÃi]Ê>`ÊÌ
iÊVÌÀ>«ÃÌÛiÊ
vÊÌ
iÊÃÌ>ÌiiÌʺ>ÃiÌL>Ê«>ÞiÀÃÊ>ÀiÊ>Ì
iÌið»ÊiV`iÊÜ
iÌ
iÀÊi>V
Ê
ÃÌ>ÌiiÌÊÃÊÌÀÕiÊÀÊv>Ãi°
-ÕÌ
)FTHENFORM )FYOUAREABASKETBALLPLAYERTHENYOUAREANATHLETE
4RUEBASKETBALLPLAYERSAREATHLETES
#ONVERSE )FYOUAREANATHLETETHENYOUAREABASKETBALLPLAYER
&ALSENOTALLATHLETESPLAYBASKETBALL
)NVERSE )FYOUARENOTABASKETBALLPLAYERTHENYOUARENOTANATHLETE
&ALSEEVENIFYOUDONTPLAYBASKETBALLYOUCANSTILLBEANATHLETE
#ONTRAPOSITIVE )FYOUARENOTANATHLETETHENYOUARENOTABASKETBALLPLAYER
4RUEAPERSONWHOISNOTANATHLETECANNOTBEABASKETBALLPLAYER
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
--" ÊÓ°Ó
!BICONDITIONALSTATEMENTISASTATEMENTTHATCONTAINSTHEPHRASE
hIFANDONLYIFv
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
7ÀÌiÊÌ
iÊvÌ
iÊvÀ]ÊÌ
iÊVÛiÀÃi]ÊÌ
iÊÛiÀÃi]Ê>`ÊÌ
iÊVÌÀ>«ÃÌÛiÊ
vÊÌ
iÊÃÌ>ÌiḭÊiV`iÊÜ
iÌ
iÀÊi>V
ÊÃÌ>ÌiiÌÊÃÊÌÀÕiÊÀÊv>Ãi°
£° !LLANGLESARESTRAIGHTANGLES
8*ÊÓ
Ó° !LLCATSAREMAMMALS
1ÃiÊ`iwÊÌÃÊ
iV`iÊÜ
iÌ
iÀÊi>V
ÊÃÌ>ÌiiÌÊ>LÕÌÊÊ
Ì
iÊ`>}À>ÊÃÊÌÀÕi°ÊÝ«>ÊÞÕÀÊ>ÃÜiÀÊ
ÕÃ}ÊÌ
iÊ`iwÊÌÃÊÞÕÊ
>ÛiÊi>Ài`°
>#$
>° !#
L° !#$AND "$#ARECOMPLEMENTARY
-ÕÌ
>° 4HISSTATEMENTISTRUE4HERIGHTANGLESYMBOLINTHEDIAGRAM
INDICATESTHATTHELINESINTERSECTTOFORMARIGHTANGLE3OTHE
LINESAREPERPENDICULAR
L° 4HISSTATEMENTISFALSE"OTHANGLESARERIGHTANGLESSOTHESUM
OFTHEIRMEASURESISNOT
1ÃiÊÌ
iÊ`>}À>ÊÊÝ>«iÊÓ°ÊiV`iÊÜ
iÌ
iÀÊi>V
ÊÃÌ>ÌiiÌÊ>LÕÌÊ
Ì
iÊ`>}À>ÊÃÊÌÀÕi°ÊÝ«>ÊÞÕÀÊ>ÃÜiÀÊÕÃ}ÊÌ
iÊ`iwÊÌÃÊÞÕÊ
>ÛiÊi>Ài`°
>"$
ΰ !#$AND "$#ARESUPPLEMENTARY {° !#
8*ÊÎ
7ÀÌiÊ>ÊLV`Ì>
--" ÊÓ°Ó
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
7ÀÌiÊÌ
iÊ`iwÊÌÊvÊÃÕ««iiÌ>ÀÞÊ>}iÃÊ>ÃÊ>ÊLV`Ì>°
-ÕÌ
$ElNITION )FTWOANGLESARESUPPLEMENTARYANGLESTHENTHESUMOFTHEIR
MEASURESIS
#ONVERSE )FTHESUMOFTHEMEASURESOFTWOANGLESISTHENTHEYARE
SUPPLEMENTARYANGLES
"ICONDITIONAL 4WOANGLESARESUPPLEMENTARYANGLESIFANDONLYIFTHESUMOF
THEIRMEASURESIS
ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ
,iÜÀÌiÊÌ
iÊ`iwÊÌÊ>ÃÊ>ÊLV`Ì>°
Ê x° )FTWOANGLESARECOMPLEMENTARYANGLESTHENTHESUMOFTHEIRMEASURESIS
Ê È° )FAPOLYGONISEQUILATERALTHENALLOFITSSIDESARECONGRUENT
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 2.2
Study Guide
1. If-then: If the measure of an angle is 1808, then the angle is a straight angle. True.
Converse: If an angle is a straight angle, then the measure of the angle is 1808. True. Inverse: If the measure of an angle is not 1808, then the angle is not a straight angle. True. Contrapositive: If an angle is not a
straight angle, then the measure of the angle is not 1808. True.
2. If-then: If an animal is a cat, then it is a mammal. True. Converse: If an animal is a mammal, then it is
a cat. False. There are mammals that are not cats. Inverse: If an animal is not a cat, then it is not a mammal.
False. There are mammals that are not cats. Contrapositive: If an animal is not a mammal, then it is not a
cat. True.
3. True; Both angles are right angles, so the sum of their measures is 1808.
4. False; The two lines do not intersect.
5. Two angles are complementary angles if and only if the sum of their measures is 908.
6. A polygon is equilateral if and only if all of its sides are congruent.
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊ`i`ÕVÌÛiÊÀi>Ã}ÊÌÊvÀÊ>Ê}V>Ê>À}Õḭ
6V>LÕ>ÀÞ
$EDUCTIVEREASONINGUSESFACTSDElNITIONSACCEPTEDPROPERTIESAND
THELAWSOFLOGICTOFORMALOGICALARGUMENT
,AWOF$ETACHMENT)FTHEHYPOTHESISOFATRUECONDITIONALSTATEMENT
ISTRUETHENTHECONCLUSIONISALSOTRUE
,AWOF3YLLOGISM)FTHESESTATEMENTSARETRUE
)FHYPOTHESISPTHENCONCLUSIONQ
)FHYPOTHESISQTHENCONCLUSIONR
THENTHEFOLLOWINGSTATEMENTISTRUE
)FHYPOTHESISPTHENCONCLUSIONR
8*Ê£
1ÃiÊÌ
iÊ>ÜÊvÊiÌ>V
iÌÊ
1ÃiÊÌ
iÊ>ÜÊvÊiÌ>V
iÌÊÌÊ>iÊ>ÊÛ>`ÊVVÕÃÊÊÌ
iÊ
ÌÀÕiÊÃÌÕ>̰
)FTWOANGLESHAVETHESAMEMEASURETHENTHEYARECONGRUENT9OUKNOWTHAT
M !M "
&IRSTIDENTIFYTHEHYPOTHESISANDTHECONCLUSIONOFTHElRSTSTATEMENT4HEHYPOTHESIS
ISh)FTWOANGLESHAVETHESAMEMEASUREv4HECONCLUSIONIShTHENTHEYARECONGRUENTv
"ECAUSEM !M "SATISlESTHEHYPOTHESISOFATRUECONDITIONALSTATEMENTTHE
CONCLUSIONISALSOTRUE3O ! "
8*ÊÓ
1ÃiÊÌ
iÊ>ÜÊvÊ-Þ}ÃÊ
vÊ«ÃÃLi]ÊÕÃiÊÌ
iÊ>ÜÊvÊ-Þ}ÃÊÌÊÜÀÌiÊÌ
iÊV`Ì>ÊÃÌ>ÌiiÌÊ
Ì
>ÌÊvÜÃÊvÀÊÌ
iÊ«>ÀÊvÊÌÀÕiÊÃÌ>ÌiiÌð
--" ÊÓ°Î
>° )FTHEELECTRICPOWERISOFFTHENTHEREFRIGERATORDOESNOTRUN
)FTHEREFRIGERATORDOESNOTRUNTHENTHEFOODWILLSPOIL
L° )FXTHENX
)FXTHENX
-ÕÌ
>° 4HECONCLUSIONOFTHElRSTSTATEMENTISTHEHYPOTHESISOFTHE
SECONDSTATEMENTSOYOUCANWRITETHEFOLLOWINGSTATEMENT
)FTHEELECTRICPOWERISOFFTHENTHEFOODWILLSPOIL
L° .OTICETHATTHECONCLUSIONOFTHESECONDSTATEMENTISTHE
HYPOTHESISOFTHElRSTSTATEMENT
)FXTHENX
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
-ÕÌ
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
ÝiÀVÃiÃÊvÀÊÝ>«iÃÊ£Ê>`ÊÓÊ
Ê £° )F !ISACUTETHENM !!NGLE"ISANACUTEANGLE5SINGTHE
,AWOF$ETACHMENTWHATCONCLUSIONCANYOUMAKE
Ê Ó° )F"ISBETWEEN!AND#THEN!""#!#%ISBETWEEN$AND&5SING
THE,AWOF$ETACHMENTWHATCONCLUSIONCANYOUMAKE
Ê Î° )FYOUSTUDYHARDYOUWILLPASSALLOFYOURCLASSES)FYOUPASSALLOFYOUR
CLASSESYOUWILLGRADUATE5SINGTHE,AWOF3YLLOGISMWHATSTATEMENTCAN
YOUMAKE
Ê {° )FX THENX )FXTHENX 5SINGTHE,AWOF3YLLOGISMWHAT
STATEMENTCANYOUMAKE
8*ÊÎ
1ÃiÊ`ÕVÌÛiÊ>`Ê`i`ÕVÌÛiÊÀi>Ã}Ê
7
>ÌÊVVÕÃÊV>ÊÞÕÊ>iÊ>LÕÌÊÌ
iÊÃÕÊvÊÌÜÊiÛiÊÌi}iÀö
-/*Ê£
,OOKFORAPATTERNINSEVERALEXAMPLES5SEINDUCTIVEREASONINGTOMAKE
ACONJECTURE
#ONJECTURE%VENINTEGER%VENINTEGER%VENINTEGER
-/*ÊÓ
,ETNANDMBEANYINTEGER5SEDEDUCTIVEREASONINGTOSHOWTHECONJECTURE
ISTRUE
NANDMAREEVENINTEGERSBECAUSEANYINTEGERMULTIPLIEDBYISEVEN
NMREPRESENTSTHESUMOFTWOEVENINTEGERS
NMCANBEWRITTENASNM
4HESUMOFTWOINTEGERSNMISANINTEGERANDANYINTEGERMULTIPLIED
BYISEVEN
4HESUMOFTWOEVENINTEGERSISANEVENINTEGER
ÝiÀVÃiÊvÀÊÝ>«iÊÎÊ
Ê x° 7HATCONCLUSIONCANYOUMAKEABOUTTHESUMOFTWOODDINTEGERS(INT!N
ODDINTEGERCANBEWRITTENASNWHERENISANYINTEGER
'EOMETRY
#HAPTER2ESOURCE"OOK
--" ÊÓ°Î
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
-ÕÌ
Answer Key
Lesson 2.3
Study Guide
1. 08 < m∠ B < 908
2. DE 1 EF 5 DF
3. If you study hard, you will graduate.
4. If x > 4, then x 2 > 8.
5. The sum of two odd integers is an even integer.
.AME ,%33/.
--" ÊÓ°{
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊ«ÃÌÕ>ÌiÃÊÛÛ}Ê«ÌÃ]ÊiÃ]Ê>`Ê«>ið
6V>LÕ>ÀÞ
!LINEISALINEPERPENDICULARTOAPLANEIFANDONLYIFTHELINE
INTERSECTSTHEPLANEINAPOINTANDISPERPENDICULARTOEVERYLINEIN
THEPLANETHATINTERSECTSITATTHATPOINT
0OSTULATE 4HROUGHANYTWOPOINTSTHEREEXISTSEXACTLYONELINE
0OSTULATE !LINECONTAINSATLEASTTWOPOINTS
0OSTULATE )FTWOLINESINTERSECTTHENTHEIRINTERSECTIONISEXACTLY
ONEPOINT
0OSTULATE 4HROUGHANYTHREENONCOLLINEARPOINTSTHEREEXISTSEXACTLY
ONEPLANE
0OSTULATE !PLANECONTAINSATLEASTTHREENONCOLLINEARPOINTS
0OSTULATE )FTWOPOINTSLIEINAPLANETHENTHELINECONTAININGTHEM
LIESINTHEPLANE
0OSTULATE )FTWOPLANESINTERSECTTHENTHEIRINTERSECTIONISALINE
`iÌvÞÊ>Ê«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊ>Ê`>}À>Ê
-Ì>ÌiÊÌ
iÊ«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊÌ
iÊ`>}À>°
>°
L°
-ÕÌ
>° 0OSTULATE !LINECONTAINSATLEASTTWOPOINTS
L° 0OSTULATE 4HROUGHANYTHREENONCOLLINEARPOINTSTHEREEXISTS
EXACTLYONEPLANE
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£Ê
-Ì>ÌiÊÌ
iÊ«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊÌ
iÊ`>}À>°
£°
'EOMETRY
#HAPTER2ESOURCE"OOK
Ó°
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
8*Ê£
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
1ÃiÊ}ÛiÊvÀ>ÌÊÌÊÃiÌV
Ê>Ê`>}À>Ê
Ê>ÌÊ«ÌÊ]ÊÃÊÌ
>ÌÊ
ÊÌiÀÃiVÌ}ÊÊ
Ê
-iÌV
Ê>Ê`>}À>ÊÃ
Ü}ÊÊÊ
ÊÊÊ>ÊÊ
ʰÊ
-ÕÌ
ANDLABELPOINTS!AND"
-/*Ê£ $RAW!"
-/*ÊÓ $RAWPOINT%ON!"
--" ÊÓ°{
8*ÊÓ
THROUGH%PERPENDICULARTO!"
-/*ÊÎ $RAW#$
-ARKARIGHTANGLE
ÝiÀVÃiÊvÀÊÝ>«iÊÓÊ
Ê Î° 2EDRAWTHEDIAGRAMIN%XAMPLEIFTHEGIVENINFORMATIONALSOSTATES
] ]
Ê Ê THAT!%z%"z
8*ÊÎ
ÌiÀ«ÀiÌÊ>Ê`>}À>ÊÊÌ
ÀiiÊ`iÃÃÊ
7
V
ÊvÊÌ
iÊvÜ}ÊÃÌ>ÌiiÌÃÊV>ÌÊLiÊ
>ÃÃÕi`ÊvÀÊÌ
iÊ`>}À>¶
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
!LLPOINTSSHOWNARECOPLANAR
>#$
ORM #%&
&'
#%AND$ARECOLLINEAR
-ÕÌ
7HENYOUINTERPRETADIAGRAMYOUCANONLYASSUMEINFORMATIONABOUTSIZEORMEASURE
IFITISMARKED
>#$
ORM #%&
7ITHNORIGHTANGLEMARKEDYOUCANNOTASSUME&'
ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ
1ÃiÊÌ
iÊ`>}À>ÊÊÝ>«iÊÎÊÌÊ`iÌiÀiÊvÊÌ
iÊÃÌ>ÌiiÌÊÃÊÌÀÕiÊ
ÀÊv>Ãi°
Ê {° #%&AND &%$AREALINEARPAIR
Ê x° #%& &%$
Ê È° #$"$
AND#$
INTERSECTAT%
Ê Ç° &'
Ê n° #%&AND '%$AREVERTICALANGLES
AND"$
DONOTINTERSECT
Ê ° &'
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 2.4
Study Guide
1. Postulate 5
2. Postulate 9
3.
4. true
5. false
6. false
7. true
8. true
9. false
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊ>}iLÀ>VÊ«À«iÀÌiÃÊÊ}V>Ê>À}ÕiÌð
6V>LÕ>ÀÞ
!LGEBRAIC0ROPERTIESOF%QUALITY
,ETABANDCBEREALNUMBERS
!DDITION0ROPERTY )FABTHENACBC
3UBTRACTION0ROPERTY )FABTHENACBC
-ULTIPLICATION0ROPERTY )FABTHENACBC
A
B
--" ÊÓ°x
$IVISION0ROPERTY )FABANDCpTHEN]
Cz]Cz
3UBSTITUTION0ROPERTY )FABTHENACANBESUBSTITUTEDFORBIN
ANYEQUATIONOREXPRESSION
$ISTRIBUTIVE0ROPERTY ABCABACWHEREABANDCARE
REALNUMBERS
2EmEXIVE0ROPERTYOF%QUALITY
2EAL.UMBERS &ORANYREALNUMBERAAA
]
3EGMENT,ENGTH &ORANYSEGMENT!"z!"!"
3YMMETRIC0ROPERTYOF%QUALITY
2EAL.UMBERS &ORANYREALNUMBERSAANDBIFAB
THENBA
]
]
3EGMENT,ENGTH &ORANYSEGMENTS!"zAND#$zIF!"#$
THEN#$!"
!NGLE-EASURE &ORANYANGLES !AND "IFM !M "
THENM "M !
4RANSITIVE0ROPERTYOF%QUALITY
2EAL.UMBERS &ORANYREALNUMBERSABANDCIFABAND
BCTHENAC
] ]
]
3EGMENT,ENGTH &ORANYSEGMENTS!"z#$zAND%&z
IF!"#$AND#$%&THEN!"%&
!NGLE-EASURE &ORANYANGLES ! "AND #IFM !M "
ANDM "M #THENM !M #
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
!NGLE-EASURE &ORANYANGLE !M !M !
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
8*Ê£
7ÀÌiÊÀi>ÃÃÊvÀÊi>V
ÊÃÌi«Ê
-ÛiÊÎÝÊÊÓ®ÊÊÝÊÊ{°Ê7ÀÌiÊ>ÊÀi>ÃÊvÀÊi>V
ÊÃÌi«°
%QUATION
2EASON
XX
7RITEORIGINALEQUATION
'IVEN
-ULTIPLY
$ISTRIBUTIVE0ROPERTY
XXXX
3UBTRACTXFROMEACHSIDE
3UBTRACTION0ROPERTY
OF%QUALITY
#OMBINELIKETERMS
3IMPLIFY
!DDTOEACHSIDE
!DDITION0ROPERTY
OF%QUALITY
$IVIDEEACHSIDEBY
$IVISION0ROPERTY
OF%QUALITY
XX
X
X
X
4HEVALUEOFXIS
--" ÊÓ°x
%XPLANATION
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
-ÛiÊÌ
iÊiµÕ>̰Ê7ÀÌiÊ>ÊÀi>ÃÊvÀÊi>V
ÊÃÌi«°
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
£° XX
8*ÊÓ
Ó° XX
1ÃiÊ«À«iÀÌiÃÊvÊiµÕ>ÌÞÊ
ÊÌ
iÊ`>}À>]Ê79ÊÊ8<°ÊÊ
-
ÜÊÌ
>ÌÊ78ÊÊ9<°
%QUATION
%XPLANATION
2EASON
797889
!DDLENGTHSOF
ADJACENTSEGMENTS
3EGMENT!DDITION 0OSTULATE
8:899:
!DDLENGTHSOF
ADJACENTSEGMENTS
3EGMENT!DDITION 0OSTULATE
798:
5SEGIVENINFORMATION
'IVEN
7889899:
3UBSTITUTE7889FOR
79AND899:FOR9:
3UBSTITUTION0ROPERTY
OF%QUALITY
789:
3UBTRACT89FROM
EACHSIDE
3UBTRACTION0ROPERTY
OF%QUALITY
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ
>iÊÌ
iÊ«À«iÀÌÞÊvÊiµÕ>ÌÞÊÌ
iÊÃÌ>ÌiiÌÊÕÃÌÀ>Ìið
Ê Î°Ê )F789:THEN9:78
Ê {° )FM$M%ANDM%THENM$
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 2.5
Study Guide
1. 2
2. 26
3. Symmetric Property of Equality
4. Transitive Property of Equality
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
7ÀÌiÊ«ÀvÃÊÕÃ}Ê}iiÌÀVÊÌ
iÀið
6V>LÕ>ÀÞ
!PROOFISALOGICALARGUMENTTHATSHOWSASTATEMENTISTRUE
!TWOCOLUMNPROOFHASNUMBEREDSTATEMENTSANDCORRESPONDING
REASONSTHATSHOWANARGUMENTINALOGICALORDER
!THEOREMISASTATEMENTTHATCANBEPROVEN
4HEOREM #ONGRUENCEOF3EGMENTS3EGMENTCONGRUENCEIS
REmEXIVESYMMETRICANDTRANSITIVE
4HEOREM #ONGRUENCEOF!NGLES!NGLECONGRUENCEISREmEXIVE
SYMMETRICANDTRANSITIVE
7ÀÌiÊ>ÊÌÜVÕÊ«ÀvÊ
7ÀÌiÊ>ÊÌÜVÕÊ«ÀvÊvÀÊÊ
Ì
iÊvÜ}ÊÃÌÕ>̰
] ]
')6%.!$"#"#z#$z
] ]
02/6%!$z#$z
--" ÊÓ°È
3TATEMENTS
£°Ê!$
2EASONS
£°'IVEN
"#
Ó°Ê!$"#
]
]
]
]
]
]
Ó°4RANSITIVE0ROPERTYOF%QUALITY
ΰÊ!$
z"#z
ΰ$ElNITIONOFCONGRUENTSEGMENTS
{°Ê"#
z#$z
{°'IVEN
x°Ê!$
z#$z
x°4RANSITIVE0ROPERTYOF%QUALITY
ÝiÀVÃiÊvÀÊÝ>«iÊ£
Ê £° 7RITEATWOCOLUMNPROOFFOR
THEFOLLOWINGSITUATION
]
] ]
Ê ')6%.!$!""#z#$z!$z#$z
Ê
02/6%"#z"!z
]
]
]
Ê
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
8*Ê£
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
>iÊÌ
iÊ«À«iÀÌÞÊÃ
ÜÊ
8*ÊÓ
>iÊÌ
iÊ«À«iÀÌÞÊÕÃÌÀ>Ìi`ÊLÞÊÌ
iÊÃÌ>Ìiḭ
] ]
] ]
] ]
Ê >° )F89z7:zAND7:z01zTHEN89z01z
L° )F - .THEN . -
-ÕÌ
>° 4RANSITIVE0ROPERTYOF3EGMENT#ONGRUENCE
L° 3YMMETRIC0ROPERTYOF!NGLE#ONGRUENCE
ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ
>iÊÌ
iÊ«À«iÀÌÞÊÕÃÌÀ>Ìi`ÊLÞÊÌ
iÊÃÌ>Ìiḭ
] ]
Ó° 2 2
] ]
{° 89z89z
]
]
ΰ )F89z01zTHEN01z
89z
x° )F 8 9AND 9 :
THEN 8 :
8*ÊÎ
/À>ÃÌÛiÊ*À«iÀÌÞÊvÊ
}ÀÕiViÊ
*ÀÛiÊÌ
iÊ/À>ÃÌÛiÊ*À«iÀÌÞÊvÊÊ
}iÊ
}ÀÕiVi°
02/6% ! #
3TATEMENTS
2EASONS
£°Ê ! "
£°'IVEN
" #
Ó°ÊM !M "
Ó°$ElNITIONOFCONGRUENTANGLES
ΰÊM "M #
ΰ$ElNITIONOFCONGRUENTANGLES
{°ÊM !M #
{°4RANSITIVE0ROPERTYOF%QUALITY
x°Ê ! #
x°$ElNITIONOFCONGRUENTANGLES
--" ÊÓ°È
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
')6%. ! " " #
ÝiÀVÃiÊvÀÊÝ>«iÊÎ
Ê È° 0ROVETHE4RANSITIVE0ROPERTYOF3EGMENT#ONGRUENCE
Ê
Ê
]
] ]
]
]
]
Ê ')6%.!"z"#z"#z#$z
Ê 02/6%!"z#$z
'EOMETRY
#HAPTER2ESOURCE"OOK
Answer Key
Lesson 2.6
Study Guide
}
}
} }
1. AD 5 12, AB 5 12 (Given); AD > AB
(Definition of congruent segments); BC > CD,
} }
} }
AD > CD (Given); BC > BA(Transitive Property of Segment Congruence)
2. Reflexive Property of Angle Congruence
3. Symmetric Property of Segment Congruence
4. Reflexive Property of Segment Congruence
5. Transitive Property of Angle Congruence
} } } }
6. AB > BC, BC > CD, (Given); AB 5 BC (Definition of congruent segments); BC 5 CD (Definition of
} }
congruent segments); AB 5 CD (Transitive Property of Equality); AB > CD
(Definition of congruent segments)
Answer Key
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`i
&ORUSEWITHPAGESn
"
1ÃiÊ«À«iÀÌiÃÊvÊëiV>Ê«>ÀÃÊvÊ>}ið
6V>LÕ>ÀÞ
4HEOREM 2IGHT!NGLES#ONGRUENCE4HEOREM!LLRIGHTANGLES
ARECONGRUENT
4HEOREM #ONGRUENT3UPPLEMENTS4HEOREM)FTWOANGLESARE
SUPPLEMENTARYTOTHESAMEANGLEORTOCONGRUENTANGLESTHENTHEY
ARECONGRUENT
4HEOREM #ONGRUENT#OMPLEMENTS4HEOREM)FTWOANGLESARE
COMPLEMENTARYTOTHESAMEANGLEORTOCONGRUENTANGLESTHENTHEY
ARECONGRUENT
0OSTULATE ,INEAR0AIR0OSTULATE)FTWOANGLESFORMALINEARPAIR
THENTHEYARESUPPLEMENTARY
4HEOREM 6ERTICAL!NGLES#ONGRUENCE4HEOREM6ERTICALANGLES
ARECONGRUENT
`Ê>}iÊi>ÃÕÀiÃÊ
«iÌiÊÌ
iÊÃÌ>ÌiiÌÊ}ÛiÊÌ
>ÌÊ ÊÊä°Ê
>° M #'$
L° )FM "'&THENM $'%
-ÕÌ
>° "ECAUSE #'$AND !'&AREVERTICALANGLES
#'$ !'&"YTHEDElNITIONOFCONGRUENT
ANGLESM #'$M !'&3OM #'$
L° "YTHE!NGLE!DDITION0OSTULATEM "'&M !'&M !'"
3UBSTITUTETOGETM !'""YTHE3UBTRACTION
0ROPERTYOF%QUALITYM !'""ECAUSE $'%AND !'"
AREVERTICALANGLES $'% !'""YTHEDElNITIONOFCONGRUENT
ANGLESM $'%M !'"3OM $'%
--" ÊÓ°Ç
ÝiÀVÃiÃÊvÀÊÝ>«iÊ£
«iÌiÊÌ
iÊÃÌ>ÌiiÌÊ}ÛiÊÌ
>ÌÊ ÊÊ ÊÊä°
Ê £° M !('
Ê Ó° M #(!
Ê Î° )FM #($THENM %(&
Ê {° )FM "('THENM #(&
Ê x° )FM %(&THENM "(#
'EOMETRY
#HAPTER2ESOURCE"OOK
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
8*Ê£
.AME ,%33/.
$ATE
-ÌÕ`ÞÊÕ`iÊ CONTINUED
&ORUSEWITHPAGESn
8*ÊÓ
`Ê>}iÊi>ÃÕÀiÃÊ
vÊ ÊÊäÊ>`Ê
ÊÊÓÈ]ÊÊ
wÊ`Ê £]Ê Ó]Ê>`Ê Î°
-ÕÌ
"'#AND #'$ARECOMPLEMENTARY
3OM !'"AND "'$ARESUPPLEMENTARY
3OM !'&AND #'$AREVERTICALANGLES
3OM ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ
ÊÝiÀVÃiÃÊÈÊ>`ÊÇ]ÊÀiviÀÊÌÊÝ>«iÊÓ°
Ȱ &INDM &'%
8*ÊÎ
ǰ &INDM $'%
1ÃiÊ>}iLÀ>Ê
-ÛiÊvÀÊÝÊÊÌ
iÊ`>}À>°ÊÊ
"ECAUSE !%"AND "%#FORMALINEARPAIRTHESUMOF
THEIRMEASURESIS3OYOUCANSOLVEFORXASFOLLOWS
X
$ElNITIONOFSUPPLEMENTARYANGLES
X
#OMBINELIKETERMS
X
X
3UBTRACTFROMBOTHSIDES
$IVIDEEACHSIDEBY
ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ
-ÛiÊvÀÊÝÊÊÌ
iÊ`>}À>°
n°
°
'EOMETRY
#HAPTER2ESOURCE"OOK
--" ÊÓ°Ç
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
-ÕÌ
Answer Key
Lesson 2.7
Study Guide
1. 908 2. 908 3. 318 4. 1258 5. 528 6. 648
7. 908 8. 147 9. 44
Answer Key