Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
.AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " iÃVÀLiÊ«>ÌÌiÀÃÊ>`ÊÕÃiÊ`ÕVÌÛiÊÀi>Ã}° 6V>LÕ>ÀÞ !CONJECTUREISANUNPROVENSTATEMENTTHATISBASEDONOBSERVATIONS 9OUUSEINDUCTIVEREASONINGWHENYOUlNDAPATTERNINSPECIlCCASES ANDTHENWRITEACONJECTUREFORTHEGENERALCASE !COUNTEREXAMPLEISASPECIlCCASEFORWHICHACONJECTUREISFALSE 8*Ê£ iÃVÀLiÊ>ÊÛÃÕ>Ê«>ÌÌiÀÊ --" ÊÓ°£ -iÌV ÊÌ iÊiÝÌÊwÊ}ÕÀiÊÊÌ iÊ«>ÌÌiÀ° -ÕÌ #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY %ACHlGURELOOKSLIKETHEONEBEFOREITEXCEPT THATITHASROTATED4HENEXTlGUREINTHE PATTERNISSHOWNATTHERIGHT ÝiÀVÃiÊvÀÊÝ>«iÊ£Ê Ê £° 3KETCHTHENEXTlGUREINTHEPATTERN Ê 8*ÊÓ iÃVÀLiÊ>ÊÕLiÀÊ«>ÌÌiÀÊ iÃVÀLiÊÌ iÊ«>ÌÌiÀÊÊÌ iÊÕLiÀÃÊÓ]Ên]ÊÎÓ]Ê£Ón]ʰʰʰÊ>`ÊÜÀÌiÊÌ iÊ iÝÌÊÌ ÀiiÊÕLiÀÃÊÊÌ iÊ«>ÌÌiÀ° -ÕÌ .OTICETHATEACHNUMBERINTHEPATTERNISFOURTIMESTHEPREVIOUSNUMBER z #ONTINUETHEPATTERN4HENEXTTHREENUMBERSAREAND 'EOMETRY #HAPTER2ESOURCE"OOK .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ iÃVÀLiÊÌ iÊ«>ÌÌiÀÊÊÌ iÊÕLiÀðÊÛiÊÌ iÊiÝÌÊÕLiÀÊÊ Ì iÊ«>ÌÌiÀ° Ó° 8*ÊΠΰ >iÊ>`ÊÌiÃÌÊ>ÊViVÌÕÀiÊ >iÊ>`ÊÌiÃÌÊ>ÊViVÌÕÀiÊ>LÕÌÊÌ iÊ«À`ÕVÌÊvÊ>ÞÊÌÜÊ``ÊÌi}iÀð --" ÊÓ°£ -ÕÌ -/*Ê£ &INDAPATTERNUSINGAFEWGROUPSOFSMALLNUMBERS #ONJECTURE 4HEPRODUCTOFANYTWOODDINTEGERSISODD -/*ÊÓ 4ESTYOURCONJECTUREUSINGOTHERNUMBERS&OREXAMPLETESTTHATITWORKS WITHTHEPAIRSAND Ê {° -AKEANDTESTACONJECTUREABOUTTHEPRODUCTOFANYTWOEVENINTEGERS Ê x° -AKEANDTESTACONJECTUREABOUTTHEPRODUCTOFANEVENINTEGERANDAN ODDINTEGER 8*Ê{ `Ê>ÊVÕÌiÀiÝ>«i `Ê>ÊVÕÌiÀiÝ>«iÊÌÊà ÜÊÌ >ÌÊÌ iÊViVÌÕÀiÊÃÊv>Ãi° #ONJECTURE !LLODDNUMBERSAREPRIME -ÕÌ 4OlNDACOUNTEREXAMPLEYOUNEEDTOlNDANODDNUMBERTHATISACOMPOSITENUMBER 4HENUMBERISODDBUTISACOMPOSITENUMBERNOTAPRIMENUMBER ÝiÀVÃiÊvÀÊÝ>«iÊ{Ê È° &INDACOUNTEREXAMPLETOSHOWTHATTHECONJECTUREISFALSE 'EOMETRY #HAPTER2ESOURCE"OOK #ONJECTURE 4HEDIFFERENCEOFTWOPOSITIVENUMBERSISALWAYSPOSITIVE #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ Answer Key Lesson 2.1 Study Guide 1. 2. Each number is 4 more than the previous number; 17 3. Each number is 3 times the previous number; 243 4. The product of any two even integers is even. 5. The product of an even integer and an odd integer is even. 6. 2 2 5 5 23, which is not positive .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 7ÀÌiÊ`iwÊÌÃÊ>ÃÊV`Ì>ÊÃÌ>ÌiiÌð 6V>LÕ>ÀÞ !CONDITIONALSTATEMENTISALOGICALSTATEMENTTHATHASTWOPARTS AHYPOTHESISANDACONCLUSION 7HENACONDITIONALSTATEMENTISWRITTENINIFTHENFORMTHEhIF vPART CONTAINSTHEHYPOTHESISANDTHEhTHENvPARTCONTAINSTHECONCLUSION 4HENEGATIONOFASTATEMENTISTHEOPPOSITEOFTHEORIGINALSTATEMENT 4OWRITETHECONVERSEOFACONDITIONALSTATEMENTSWITCHTHEHYPOTHESIS ANDCONCLUSION 4OWRITETHEINVERSEOFACONDITIONALSTATEMENTNEGATEBOTHTHE HYPOTHESISANDCONCLUSION 4OWRITETHECONTRAPOSITIVEOFACONDITIONALSTATEMENTlRSTWRITETHE CONVERSEANDTHENNEGATEBOTHTHEHYPOTHESISANDTHECONCLUSION 7HENTWOSTATEMENTSAREBOTHTRUEORAREBOTHFALSETHEYARECALLED EQUIVALENTSTATEMENTS )FTWOLINESINTERSECTTOFORMARIGHTANGLETHENTHEYARE PERPENDICULARLINES 8*Ê£ ,iÜÀÌiÊvÕÀÊÀi>Ìi`ÊV`Ì>ÊÃÌ>ÌiiÌÃÊ 7ÀÌiÊÌ iÊvÌ iÊvÀ]ÊÌ iÊVÛiÀÃi]ÊÌ iÊÛiÀÃi]Ê>`ÊÌ iÊVÌÀ>«ÃÌÛiÊ vÊÌ iÊÃÌ>ÌiiÌʺ>ÃiÌL>Ê«>ÞiÀÃÊ>ÀiÊ>Ì iÌið»ÊiV`iÊÜ iÌ iÀÊi>V Ê ÃÌ>ÌiiÌÊÃÊÌÀÕiÊÀÊv>Ãi° -ÕÌ )FTHENFORM )FYOUAREABASKETBALLPLAYERTHENYOUAREANATHLETE 4RUEBASKETBALLPLAYERSAREATHLETES #ONVERSE )FYOUAREANATHLETETHENYOUAREABASKETBALLPLAYER &ALSENOTALLATHLETESPLAYBASKETBALL )NVERSE )FYOUARENOTABASKETBALLPLAYERTHENYOUARENOTANATHLETE &ALSEEVENIFYOUDONTPLAYBASKETBALLYOUCANSTILLBEANATHLETE #ONTRAPOSITIVE )FYOUARENOTANATHLETETHENYOUARENOTABASKETBALLPLAYER 4RUEAPERSONWHOISNOTANATHLETECANNOTBEABASKETBALLPLAYER 'EOMETRY #HAPTER2ESOURCE"OOK #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY --" ÊÓ°Ó !BICONDITIONALSTATEMENTISASTATEMENTTHATCONTAINSTHEPHRASE hIFANDONLYIFv .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn ÝiÀVÃiÃÊvÀÊÝ>«iÊ£ 7ÀÌiÊÌ iÊvÌ iÊvÀ]ÊÌ iÊVÛiÀÃi]ÊÌ iÊÛiÀÃi]Ê>`ÊÌ iÊVÌÀ>«ÃÌÛiÊ vÊÌ iÊÃÌ>ÌiḭÊiV`iÊÜ iÌ iÀÊi>V ÊÃÌ>ÌiiÌÊÃÊÌÀÕiÊÀÊv>Ãi° £° !LLANGLESARESTRAIGHTANGLES 8*ÊÓ Ó° !LLCATSAREMAMMALS 1ÃiÊ`iwÊÌÃÊ iV`iÊÜ iÌ iÀÊi>V ÊÃÌ>ÌiiÌÊ>LÕÌÊÊ Ì iÊ`>}À>ÊÃÊÌÀÕi°ÊÝ«>ÊÞÕÀÊ>ÃÜiÀÊ ÕÃ}ÊÌ iÊ`iwÊÌÃÊÞÕÊ >ÛiÊi>Ài`° >#$ >° !# L° !#$AND "$#ARECOMPLEMENTARY -ÕÌ >° 4HISSTATEMENTISTRUE4HERIGHTANGLESYMBOLINTHEDIAGRAM INDICATESTHATTHELINESINTERSECTTOFORMARIGHTANGLE3OTHE LINESAREPERPENDICULAR L° 4HISSTATEMENTISFALSE"OTHANGLESARERIGHTANGLESSOTHESUM OFTHEIRMEASURESISNOT 1ÃiÊÌ iÊ`>}À>ÊÊÝ>«iÊÓ°ÊiV`iÊÜ iÌ iÀÊi>V ÊÃÌ>ÌiiÌÊ>LÕÌÊ Ì iÊ`>}À>ÊÃÊÌÀÕi°ÊÝ«>ÊÞÕÀÊ>ÃÜiÀÊÕÃ}ÊÌ iÊ`iwÊÌÃÊÞÕÊ >ÛiÊi>Ài`° >"$ ΰ !#$AND "$#ARESUPPLEMENTARY {° !# 8*ÊÎ 7ÀÌiÊ>ÊLV`Ì> --" ÊÓ°Ó #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ 7ÀÌiÊÌ iÊ`iwÊÌÊvÊÃÕ««iiÌ>ÀÞÊ>}iÃÊ>ÃÊ>ÊLV`Ì>° -ÕÌ $ElNITION )FTWOANGLESARESUPPLEMENTARYANGLESTHENTHESUMOFTHEIR MEASURESIS #ONVERSE )FTHESUMOFTHEMEASURESOFTWOANGLESISTHENTHEYARE SUPPLEMENTARYANGLES "ICONDITIONAL 4WOANGLESARESUPPLEMENTARYANGLESIFANDONLYIFTHESUMOF THEIRMEASURESIS ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ ,iÜÀÌiÊÌ iÊ`iwÊÌÊ>ÃÊ>ÊLV`Ì>° Ê x° )FTWOANGLESARECOMPLEMENTARYANGLESTHENTHESUMOFTHEIRMEASURESIS Ê È° )FAPOLYGONISEQUILATERALTHENALLOFITSSIDESARECONGRUENT 'EOMETRY #HAPTER2ESOURCE"OOK Answer Key Lesson 2.2 Study Guide 1. If-then: If the measure of an angle is 1808, then the angle is a straight angle. True. Converse: If an angle is a straight angle, then the measure of the angle is 1808. True. Inverse: If the measure of an angle is not 1808, then the angle is not a straight angle. True. Contrapositive: If an angle is not a straight angle, then the measure of the angle is not 1808. True. 2. If-then: If an animal is a cat, then it is a mammal. True. Converse: If an animal is a mammal, then it is a cat. False. There are mammals that are not cats. Inverse: If an animal is not a cat, then it is not a mammal. False. There are mammals that are not cats. Contrapositive: If an animal is not a mammal, then it is not a cat. True. 3. True; Both angles are right angles, so the sum of their measures is 1808. 4. False; The two lines do not intersect. 5. Two angles are complementary angles if and only if the sum of their measures is 908. 6. A polygon is equilateral if and only if all of its sides are congruent. .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 1ÃiÊ`i`ÕVÌÛiÊÀi>Ã}ÊÌÊvÀÊ>Ê}V>Ê>À}Õḭ 6V>LÕ>ÀÞ $EDUCTIVEREASONINGUSESFACTSDElNITIONSACCEPTEDPROPERTIESAND THELAWSOFLOGICTOFORMALOGICALARGUMENT ,AWOF$ETACHMENT)FTHEHYPOTHESISOFATRUECONDITIONALSTATEMENT ISTRUETHENTHECONCLUSIONISALSOTRUE ,AWOF3YLLOGISM)FTHESESTATEMENTSARETRUE )FHYPOTHESISPTHENCONCLUSIONQ )FHYPOTHESISQTHENCONCLUSIONR THENTHEFOLLOWINGSTATEMENTISTRUE )FHYPOTHESISPTHENCONCLUSIONR 8*Ê£ 1ÃiÊÌ iÊ>ÜÊvÊiÌ>V iÌÊ 1ÃiÊÌ iÊ>ÜÊvÊiÌ>V iÌÊÌÊ>iÊ>ÊÛ>`ÊVVÕÃÊÊÌ iÊ ÌÀÕiÊÃÌÕ>̰ )FTWOANGLESHAVETHESAMEMEASURETHENTHEYARECONGRUENT9OUKNOWTHAT M !M " &IRSTIDENTIFYTHEHYPOTHESISANDTHECONCLUSIONOFTHElRSTSTATEMENT4HEHYPOTHESIS ISh)FTWOANGLESHAVETHESAMEMEASUREv4HECONCLUSIONIShTHENTHEYARECONGRUENTv "ECAUSEM !M "SATISlESTHEHYPOTHESISOFATRUECONDITIONALSTATEMENTTHE CONCLUSIONISALSOTRUE3O ! " 8*ÊÓ 1ÃiÊÌ iÊ>ÜÊvÊ-Þ}ÃÊ vÊ«ÃÃLi]ÊÕÃiÊÌ iÊ>ÜÊvÊ-Þ}ÃÊÌÊÜÀÌiÊÌ iÊV`Ì>ÊÃÌ>ÌiiÌÊ Ì >ÌÊvÜÃÊvÀÊÌ iÊ«>ÀÊvÊÌÀÕiÊÃÌ>ÌiiÌð --" ÊÓ°Î >° )FTHEELECTRICPOWERISOFFTHENTHEREFRIGERATORDOESNOTRUN )FTHEREFRIGERATORDOESNOTRUNTHENTHEFOODWILLSPOIL L° )FXTHENX )FXTHENX -ÕÌ >° 4HECONCLUSIONOFTHElRSTSTATEMENTISTHEHYPOTHESISOFTHE SECONDSTATEMENTSOYOUCANWRITETHEFOLLOWINGSTATEMENT )FTHEELECTRICPOWERISOFFTHENTHEFOODWILLSPOIL L° .OTICETHATTHECONCLUSIONOFTHESECONDSTATEMENTISTHE HYPOTHESISOFTHElRSTSTATEMENT )FXTHENX 'EOMETRY #HAPTER2ESOURCE"OOK #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY -ÕÌ .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn ÝiÀVÃiÃÊvÀÊÝ>«iÃÊ£Ê>`ÊÓÊ Ê £° )F !ISACUTETHENM !!NGLE"ISANACUTEANGLE5SINGTHE ,AWOF$ETACHMENTWHATCONCLUSIONCANYOUMAKE Ê Ó° )F"ISBETWEEN!AND#THEN!""#!#%ISBETWEEN$AND&5SING THE,AWOF$ETACHMENTWHATCONCLUSIONCANYOUMAKE Ê Î° )FYOUSTUDYHARDYOUWILLPASSALLOFYOURCLASSES)FYOUPASSALLOFYOUR CLASSESYOUWILLGRADUATE5SINGTHE,AWOF3YLLOGISMWHATSTATEMENTCAN YOUMAKE Ê {° )FX THENX )FXTHENX 5SINGTHE,AWOF3YLLOGISMWHAT STATEMENTCANYOUMAKE 8*ÊÎ 1ÃiÊ`ÕVÌÛiÊ>`Ê`i`ÕVÌÛiÊÀi>Ã}Ê 7 >ÌÊVVÕÃÊV>ÊÞÕÊ>iÊ>LÕÌÊÌ iÊÃÕÊvÊÌÜÊiÛiÊÌi}iÀö -/*Ê£ ,OOKFORAPATTERNINSEVERALEXAMPLES5SEINDUCTIVEREASONINGTOMAKE ACONJECTURE #ONJECTURE%VENINTEGER%VENINTEGER%VENINTEGER -/*ÊÓ ,ETNANDMBEANYINTEGER5SEDEDUCTIVEREASONINGTOSHOWTHECONJECTURE ISTRUE NANDMAREEVENINTEGERSBECAUSEANYINTEGERMULTIPLIEDBYISEVEN NMREPRESENTSTHESUMOFTWOEVENINTEGERS NMCANBEWRITTENASNM 4HESUMOFTWOINTEGERSNMISANINTEGERANDANYINTEGERMULTIPLIED BYISEVEN 4HESUMOFTWOEVENINTEGERSISANEVENINTEGER ÝiÀVÃiÊvÀÊÝ>«iÊÎÊ Ê x° 7HATCONCLUSIONCANYOUMAKEABOUTTHESUMOFTWOODDINTEGERS(INT!N ODDINTEGERCANBEWRITTENASNWHERENISANYINTEGER 'EOMETRY #HAPTER2ESOURCE"OOK --" ÊÓ°Î #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY -ÕÌ Answer Key Lesson 2.3 Study Guide 1. 08 < m∠ B < 908 2. DE 1 EF 5 DF 3. If you study hard, you will graduate. 4. If x > 4, then x 2 > 8. 5. The sum of two odd integers is an even integer. .AME ,%33/. --" ÊÓ°{ $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 1ÃiÊ«ÃÌÕ>ÌiÃÊÛÛ}Ê«ÌÃ]ÊiÃ]Ê>`Ê«>ið 6V>LÕ>ÀÞ !LINEISALINEPERPENDICULARTOAPLANEIFANDONLYIFTHELINE INTERSECTSTHEPLANEINAPOINTANDISPERPENDICULARTOEVERYLINEIN THEPLANETHATINTERSECTSITATTHATPOINT 0OSTULATE 4HROUGHANYTWOPOINTSTHEREEXISTSEXACTLYONELINE 0OSTULATE !LINECONTAINSATLEASTTWOPOINTS 0OSTULATE )FTWOLINESINTERSECTTHENTHEIRINTERSECTIONISEXACTLY ONEPOINT 0OSTULATE 4HROUGHANYTHREENONCOLLINEARPOINTSTHEREEXISTSEXACTLY ONEPLANE 0OSTULATE !PLANECONTAINSATLEASTTHREENONCOLLINEARPOINTS 0OSTULATE )FTWOPOINTSLIEINAPLANETHENTHELINECONTAININGTHEM LIESINTHEPLANE 0OSTULATE )FTWOPLANESINTERSECTTHENTHEIRINTERSECTIONISALINE `iÌvÞÊ>Ê«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊ>Ê`>}À>Ê -Ì>ÌiÊÌ iÊ«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊÌ iÊ`>}À>° >° L° -ÕÌ >° 0OSTULATE !LINECONTAINSATLEASTTWOPOINTS L° 0OSTULATE 4HROUGHANYTHREENONCOLLINEARPOINTSTHEREEXISTS EXACTLYONEPLANE ÝiÀVÃiÃÊvÀÊÝ>«iÊ£Ê -Ì>ÌiÊÌ iÊ«ÃÌÕ>ÌiÊÕÃÌÀ>Ìi`ÊLÞÊÌ iÊ`>}À>° £° 'EOMETRY #HAPTER2ESOURCE"OOK Ó° #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY 8*Ê£ .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn 1ÃiÊ}ÛiÊvÀ>ÌÊÌÊÃiÌV Ê>Ê`>}À>Ê Ê>ÌÊ«ÌÊ]ÊÃÊÌ >ÌÊ ÊÌiÀÃiVÌ}ÊÊ Ê -iÌV Ê>Ê`>}À>Êà Ü}ÊÊÊ ÊÊÊ>ÊÊ Ê°Ê -ÕÌ ANDLABELPOINTS!AND" -/*Ê£ $RAW!" -/*ÊÓ $RAWPOINT%ON!" --" ÊÓ°{ 8*ÊÓ THROUGH%PERPENDICULARTO!" -/*ÊÎ $RAW#$ -ARKARIGHTANGLE ÝiÀVÃiÊvÀÊÝ>«iÊÓÊ Ê Î° 2EDRAWTHEDIAGRAMIN%XAMPLEIFTHEGIVENINFORMATIONALSOSTATES ] ] Ê Ê THAT!%z%"z 8*ÊÎ ÌiÀ«ÀiÌÊ>Ê`>}À>ÊÊÌ ÀiiÊ`iÃÃÊ 7 V ÊvÊÌ iÊvÜ}ÊÃÌ>ÌiiÌÃÊV>ÌÊLiÊ >ÃÃÕi`ÊvÀÊÌ iÊ`>}À>¶ #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY !LLPOINTSSHOWNARECOPLANAR >#$ ORM #%& &' #%AND$ARECOLLINEAR -ÕÌ 7HENYOUINTERPRETADIAGRAMYOUCANONLYASSUMEINFORMATIONABOUTSIZEORMEASURE IFITISMARKED >#$ ORM #%& 7ITHNORIGHTANGLEMARKEDYOUCANNOTASSUME&' ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ 1ÃiÊÌ iÊ`>}À>ÊÊÝ>«iÊÎÊÌÊ`iÌiÀiÊvÊÌ iÊÃÌ>ÌiiÌÊÃÊÌÀÕiÊ ÀÊv>Ãi° Ê {° #%&AND &%$AREALINEARPAIR Ê x° #%& &%$ Ê È° #$"$ AND#$ INTERSECTAT% Ê Ç° &' Ê n° #%&AND '%$AREVERTICALANGLES AND"$ DONOTINTERSECT Ê ° &' 'EOMETRY #HAPTER2ESOURCE"OOK Answer Key Lesson 2.4 Study Guide 1. Postulate 5 2. Postulate 9 3. 4. true 5. false 6. false 7. true 8. true 9. false .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 1ÃiÊ>}iLÀ>VÊ«À«iÀÌiÃÊÊ}V>Ê>À}ÕiÌð 6V>LÕ>ÀÞ !LGEBRAIC0ROPERTIESOF%QUALITY ,ETABANDCBEREALNUMBERS !DDITION0ROPERTY )FABTHENACBC 3UBTRACTION0ROPERTY )FABTHENACBC -ULTIPLICATION0ROPERTY )FABTHENACBC A B --" ÊÓ°x $IVISION0ROPERTY )FABANDCpTHEN] Cz]Cz 3UBSTITUTION0ROPERTY )FABTHENACANBESUBSTITUTEDFORBIN ANYEQUATIONOREXPRESSION $ISTRIBUTIVE0ROPERTY ABCABACWHEREABANDCARE REALNUMBERS 2EmEXIVE0ROPERTYOF%QUALITY 2EAL.UMBERS &ORANYREALNUMBERAAA ] 3EGMENT,ENGTH &ORANYSEGMENT!"z!"!" 3YMMETRIC0ROPERTYOF%QUALITY 2EAL.UMBERS &ORANYREALNUMBERSAANDBIFAB THENBA ] ] 3EGMENT,ENGTH &ORANYSEGMENTS!"zAND#$zIF!"#$ THEN#$!" !NGLE-EASURE &ORANYANGLES !AND "IFM !M " THENM "M ! 4RANSITIVE0ROPERTYOF%QUALITY 2EAL.UMBERS &ORANYREALNUMBERSABANDCIFABAND BCTHENAC ] ] ] 3EGMENT,ENGTH &ORANYSEGMENTS!"z#$zAND%&z IF!"#$AND#$%&THEN!"%& !NGLE-EASURE &ORANYANGLES ! "AND #IFM !M " ANDM "M #THENM !M # 'EOMETRY #HAPTER2ESOURCE"OOK #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY !NGLE-EASURE &ORANYANGLE !M !M ! .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn 8*Ê£ 7ÀÌiÊÀi>ÃÃÊvÀÊi>V ÊÃÌi«Ê -ÛiÊÎÝÊÊÓ®ÊÊÝÊÊ{°Ê7ÀÌiÊ>ÊÀi>ÃÊvÀÊi>V ÊÃÌi«° %QUATION 2EASON XX 7RITEORIGINALEQUATION 'IVEN -ULTIPLY $ISTRIBUTIVE0ROPERTY XXXX 3UBTRACTXFROMEACHSIDE 3UBTRACTION0ROPERTY OF%QUALITY #OMBINELIKETERMS 3IMPLIFY !DDTOEACHSIDE !DDITION0ROPERTY OF%QUALITY $IVIDEEACHSIDEBY $IVISION0ROPERTY OF%QUALITY XX X X X 4HEVALUEOFXIS --" ÊÓ°x %XPLANATION ÝiÀVÃiÃÊvÀÊÝ>«iÊ£ -ÛiÊÌ iÊiµÕ>̰Ê7ÀÌiÊ>ÊÀi>ÃÊvÀÊi>V ÊÃÌi«° #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY £° XX 8*ÊÓ Ó° XX 1ÃiÊ«À«iÀÌiÃÊvÊiµÕ>ÌÞÊ ÊÌ iÊ`>}À>]Ê79ÊÊ8<°ÊÊ - ÜÊÌ >ÌÊ78ÊÊ9<° %QUATION %XPLANATION 2EASON 797889 !DDLENGTHSOF ADJACENTSEGMENTS 3EGMENT!DDITION 0OSTULATE 8:899: !DDLENGTHSOF ADJACENTSEGMENTS 3EGMENT!DDITION 0OSTULATE 798: 5SEGIVENINFORMATION 'IVEN 7889899: 3UBSTITUTE7889FOR 79AND899:FOR9: 3UBSTITUTION0ROPERTY OF%QUALITY 789: 3UBTRACT89FROM EACHSIDE 3UBTRACTION0ROPERTY OF%QUALITY ÝiÀVÃiÃÊvÀÊÝ>«iÊÓ >iÊÌ iÊ«À«iÀÌÞÊvÊiµÕ>ÌÞÊÌ iÊÃÌ>ÌiiÌÊÕÃÌÀ>Ìið Ê Î°Ê )F789:THEN9:78 Ê {° )FM$M%ANDM%THENM$ 'EOMETRY #HAPTER2ESOURCE"OOK Answer Key Lesson 2.5 Study Guide 1. 2 2. 26 3. Symmetric Property of Equality 4. Transitive Property of Equality .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 7ÀÌiÊ«ÀvÃÊÕÃ}Ê}iiÌÀVÊÌ iÀið 6V>LÕ>ÀÞ !PROOFISALOGICALARGUMENTTHATSHOWSASTATEMENTISTRUE !TWOCOLUMNPROOFHASNUMBEREDSTATEMENTSANDCORRESPONDING REASONSTHATSHOWANARGUMENTINALOGICALORDER !THEOREMISASTATEMENTTHATCANBEPROVEN 4HEOREM #ONGRUENCEOF3EGMENTS3EGMENTCONGRUENCEIS REmEXIVESYMMETRICANDTRANSITIVE 4HEOREM #ONGRUENCEOF!NGLES!NGLECONGRUENCEISREmEXIVE SYMMETRICANDTRANSITIVE 7ÀÌiÊ>ÊÌÜVÕÊ«ÀvÊ 7ÀÌiÊ>ÊÌÜVÕÊ«ÀvÊvÀÊÊ Ì iÊvÜ}ÊÃÌÕ>̰ ] ] ')6%.!$"#"#z#$z ] ] 02/6%!$z#$z --" ÊÓ°È 3TATEMENTS £°Ê!$ 2EASONS £°'IVEN "# Ó°Ê!$"# ] ] ] ] ] ] Ó°4RANSITIVE0ROPERTYOF%QUALITY ΰÊ!$ z"#z ΰ$ElNITIONOFCONGRUENTSEGMENTS {°Ê"# z#$z {°'IVEN x°Ê!$ z#$z x°4RANSITIVE0ROPERTYOF%QUALITY ÝiÀVÃiÊvÀÊÝ>«iÊ£ Ê £° 7RITEATWOCOLUMNPROOFFOR THEFOLLOWINGSITUATION ] ] ] Ê ')6%.!$!""#z#$z!$z#$z Ê 02/6%"#z"!z ] ] ] Ê 'EOMETRY #HAPTER2ESOURCE"OOK #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY 8*Ê£ .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn >iÊÌ iÊ«À«iÀÌÞÊà ÜÊ 8*ÊÓ >iÊÌ iÊ«À«iÀÌÞÊÕÃÌÀ>Ìi`ÊLÞÊÌ iÊÃÌ>Ìiḭ ] ] ] ] ] ] Ê >° )F89z7:zAND7:z01zTHEN89z01z L° )F - .THEN . - -ÕÌ >° 4RANSITIVE0ROPERTYOF3EGMENT#ONGRUENCE L° 3YMMETRIC0ROPERTYOF!NGLE#ONGRUENCE ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ >iÊÌ iÊ«À«iÀÌÞÊÕÃÌÀ>Ìi`ÊLÞÊÌ iÊÃÌ>Ìiḭ ] ] Ó° 2 2 ] ] {° 89z89z ] ] ΰ )F89z01zTHEN01z 89z x° )F 8 9AND 9 : THEN 8 : 8*ÊÎ /À>ÃÌÛiÊ*À«iÀÌÞÊvÊ }ÀÕiViÊ *ÀÛiÊÌ iÊ/À>ÃÌÛiÊ*À«iÀÌÞÊvÊÊ }iÊ }ÀÕiVi° 02/6% ! # 3TATEMENTS 2EASONS £°Ê ! " £°'IVEN " # Ó°ÊM !M " Ó°$ElNITIONOFCONGRUENTANGLES ΰÊM "M # ΰ$ElNITIONOFCONGRUENTANGLES {°ÊM !M # {°4RANSITIVE0ROPERTYOF%QUALITY x°Ê ! # x°$ElNITIONOFCONGRUENTANGLES --" ÊÓ°È #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY ')6%. ! " " # ÝiÀVÃiÊvÀÊÝ>«iÊÎ Ê È° 0ROVETHE4RANSITIVE0ROPERTYOF3EGMENT#ONGRUENCE Ê Ê ] ] ] ] ] ] Ê ')6%.!"z"#z"#z#$z Ê 02/6%!"z#$z 'EOMETRY #HAPTER2ESOURCE"OOK Answer Key Lesson 2.6 Study Guide } } } } 1. AD 5 12, AB 5 12 (Given); AD > AB (Definition of congruent segments); BC > CD, } } } } AD > CD (Given); BC > BA(Transitive Property of Segment Congruence) 2. Reflexive Property of Angle Congruence 3. Symmetric Property of Segment Congruence 4. Reflexive Property of Segment Congruence 5. Transitive Property of Angle Congruence } } } } 6. AB > BC, BC > CD, (Given); AB 5 BC (Definition of congruent segments); BC 5 CD (Definition of } } congruent segments); AB 5 CD (Transitive Property of Equality); AB > CD (Definition of congruent segments) Answer Key .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`i &ORUSEWITHPAGESn " 1ÃiÊ«À«iÀÌiÃÊvÊëiV>Ê«>ÀÃÊvÊ>}ið 6V>LÕ>ÀÞ 4HEOREM 2IGHT!NGLES#ONGRUENCE4HEOREM!LLRIGHTANGLES ARECONGRUENT 4HEOREM #ONGRUENT3UPPLEMENTS4HEOREM)FTWOANGLESARE SUPPLEMENTARYTOTHESAMEANGLEORTOCONGRUENTANGLESTHENTHEY ARECONGRUENT 4HEOREM #ONGRUENT#OMPLEMENTS4HEOREM)FTWOANGLESARE COMPLEMENTARYTOTHESAMEANGLEORTOCONGRUENTANGLESTHENTHEY ARECONGRUENT 0OSTULATE ,INEAR0AIR0OSTULATE)FTWOANGLESFORMALINEARPAIR THENTHEYARESUPPLEMENTARY 4HEOREM 6ERTICAL!NGLES#ONGRUENCE4HEOREM6ERTICALANGLES ARECONGRUENT `Ê>}iÊi>ÃÕÀiÃÊ «iÌiÊÌ iÊÃÌ>ÌiiÌÊ}ÛiÊÌ >ÌÊ ÊÊä°Ê >° M #'$ L° )FM "'&THENM $'% -ÕÌ >° "ECAUSE #'$AND !'&AREVERTICALANGLES #'$ !'&"YTHEDElNITIONOFCONGRUENT ANGLESM #'$M !'&3OM #'$ L° "YTHE!NGLE!DDITION0OSTULATEM "'&M !'&M !'" 3UBSTITUTETOGETM !'""YTHE3UBTRACTION 0ROPERTYOF%QUALITYM !'""ECAUSE $'%AND !'" AREVERTICALANGLES $'% !'""YTHEDElNITIONOFCONGRUENT ANGLESM $'%M !'"3OM $'% --" ÊÓ°Ç ÝiÀVÃiÃÊvÀÊÝ>«iÊ£ «iÌiÊÌ iÊÃÌ>ÌiiÌÊ}ÛiÊÌ >ÌÊ ÊÊ ÊÊä° Ê £° M !(' Ê Ó° M #(! Ê Î° )FM #($THENM %(& Ê {° )FM "('THENM #(& Ê x° )FM %(&THENM "(# 'EOMETRY #HAPTER2ESOURCE"OOK #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY 8*Ê£ .AME ,%33/. $ATE -ÌÕ`ÞÊÕ`iÊ CONTINUED &ORUSEWITHPAGESn 8*ÊÓ `Ê>}iÊi>ÃÕÀiÃÊ vÊ ÊÊäÊ>`Ê ÊÊÓÈ]ÊÊ wÊ`Ê £]Ê Ó]Ê>`Ê Î° -ÕÌ "'#AND #'$ARECOMPLEMENTARY 3OM !'"AND "'$ARESUPPLEMENTARY 3OM !'&AND #'$AREVERTICALANGLES 3OM ÝiÀVÃiÃÊvÀÊÝ>«iÊÓÊ ÊÝiÀVÃiÃÊÈÊ>`ÊÇ]ÊÀiviÀÊÌÊÝ>«iÊÓ° Ȱ &INDM &'% 8*ÊΠǰ &INDM $'% 1ÃiÊ>}iLÀ>Ê -ÛiÊvÀÊÝÊÊÌ iÊ`>}À>°ÊÊ "ECAUSE !%"AND "%#FORMALINEARPAIRTHESUMOF THEIRMEASURESIS3OYOUCANSOLVEFORXASFOLLOWS X $ElNITIONOFSUPPLEMENTARYANGLES X #OMBINELIKETERMS X X 3UBTRACTFROMBOTHSIDES $IVIDEEACHSIDEBY ÝiÀVÃiÃÊvÀÊÝ>«iÊÎÊ -ÛiÊvÀÊÝÊÊÌ iÊ`>}À>° n° ° 'EOMETRY #HAPTER2ESOURCE"OOK --" ÊÓ°Ç #OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY -ÕÌ Answer Key Lesson 2.7 Study Guide 1. 908 2. 908 3. 318 4. 1258 5. 528 6. 648 7. 908 8. 147 9. 44 Answer Key