Download Unit 3 1 2 3 4 Unit 3 Unit 3 Unit 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Unit 3
M.Sigley, Baker MS
Unit 3
1
2
Unit 3
Unit 3
M.Sigley, Baker MS
M.Sigley, Baker MS
3
M.Sigley, Baker MS
4
Unit 3
DEFINITION
DEFINITION
Unit 3
Polygon
 Plane figure made of 3 or more line
Equiangular
segments
 All angles congruent
 Line segments are called sides
 Sides have common endpoints called
vertices
2
M.Sigley, Baker MS
Unit 3
Unit 3
DEFINITION
1
M.Sigley, Baker MS
DEFINITION
Equilateral
Regular
 All sides congruent
 All angles congruent
 All sides congruent
M.Sigley, Baker MS
4
M.Sigley, Baker MS
3
Unit 3
Unit 3
n
Ѳ
M.Sigley, Baker MS
5
6
Unit 3
Unit 3
M.Sigley, Baker MS
M.Sigley, Baker MS
7
M.Sigley, Baker MS
8
Unit 3
DEFINITION
Central Angle
Reflectional Symmetry
 Angle formed using the center of
the polygon
 When a figure can be reflected
across a line and still be the
same picture

6
M.Sigley, Baker MS
DEFINITION
Unit 3
Ѳ = 360/n (n = number of sides)
5
M.Sigley, Baker MS
DEFINITION
Unit 3
Equilateral Triangle
Isosceles Triangle
 All sides congruent
 Two sides congruent
M.Sigley, Baker MS
DEFINITION
Unit 3
8
M.Sigley, Baker MS
7
Unit 3
Unit 3
9
M.Sigley, Baker MS
10
Unit 3
Unit 3
M.Sigley, Baker MS
M.Sigley, Baker MS
12
11
M.Sigley, Baker MS
12
Unit 3
DEFINITION
Scalene Triangle
Rotational Symmetry
 NO sides congruent
 When a figure moves around a
fixed point and the image
remains the same
10
M.Sigley, Baker MS
Unit 3
DEFINITION
Unit 3
PROPERTIES
PROPERTIE
S
Unit 3
Parallelogram
 Quadrilateral with two pairs of parallel
sides
9
M.Sigley, Baker MS
Trapezoid
 Opposite sides are congruent
 Quadrilateral with one pair of
parallel sides
 Opposite angles are congruent
 Diagonals bisect each other
 Consecutive angles are supplementary
M.Sigley, Baker MS
12
M.Sigley, Baker MS
11
Unit 3
M.Sigley, Baker MS
Unit 3
13
14
Unit 3
Unit 3
M.Sigley, Baker MS
M.Sigley, Baker MS
15
M.Sigley, Baker MS
16
Unit 3
PROPERTIES
Rhombus
Rectangle
 Quadrilateral with four congruent
sides
 Quadrilateral with four right angles
 Parallelogram
 Parallelogram
 Diagonals are congruent
 Diagonals are perpendicular
14
M.Sigley, Baker MS
Unit 3
PROPERTIES
Unit 3
DEFINITION
13
M.Sigley, Baker MS
Unit 3
PROPERTIES
Square
Transversal
 Quadrilateral with four right angles
and four congruent sides
 Line, ray, or segment that intersects
two or more coplanar lines, rays or
segments at different points
 Parallelogram, rhombus and rectangle
 Diagonals are congruent, bisect each
other, and are perpendicular
M.Sigley, Baker MS
16
M.Sigley, Baker MS
15
Unit 3
Unit 3
2
1
3
4
3
4
6
5
6
5
7
8
7
8
Alternate Interior Angles?
Corresponding Angles?
17
M.Sigley, Baker MS
18
M.Sigley, Baker MS
Unit 3
Unit 3
2
1
4
2
1
3
4
6
5
8
3
6
5
7
8
7
Same Side Interior Angles?
Alternate Exterior Angles?
M.Sigley, Baker MS
2
1
19
M.Sigley, Baker MS
20
Unit 3
THEOREM
POSTULATE
Unit 3

1≅
5

4≅
6

2 ≅

3 ≅
5

4≅
8

3≅
7
18
M.Sigley, Baker MS
Unit 3
THEOREM
6
17
M.Sigley, Baker MS
THEOREM
Unit 3
Same Side Interior Angles
If two parallel lines are cut by a
transversal, then same side interior
angles are supplementary.
m

1≅
7

2 ≅
8
4 + m 5 = 180˚
m 3 + m 6 = 180
M.Sigley, Baker MS
20
M.Sigley, Baker MS
19
Unit 3
Unit 3
2
1
21
M.Sigley, Baker MS
4
22
M.Sigley, Baker MS
Unit 3
Unit 3
n
n
1
m
2
5
4
3
Measure of an Interior Angle?
Sum of Interior Angles?
M.Sigley, Baker MS
3
1
3
2
23
M.Sigley, Baker MS
24
Unit 3
THEOREM
Exterior Angle of a Triangle
Triangle Sum
 The measure of the exterior angle of
a triangle is equal to the sum of
the remote interior angles.
 The angles of a triangle added
together equal 180°.
22
M.Sigley, Baker MS
Unit 3
THEOREM
Unit 3
THEOREM
Unit 3
THEOREM
21
M.Sigley, Baker MS
Measure of Interior Angle of a Polygon
Sum of Interior Angles of a Polygon
m = 180° - 360°/n
s = (n – 2)180°
M.Sigley, Baker MS
24
M.Sigley, Baker MS
23
Unit 3
Unit 3
1
5
Sum
of
Exterior
2
Angles?
4
M.Sigley, Baker MS
3
25
Unit 3
Unit 3
M.Sigley, Baker MS
26
M.Sigley, Baker MS
27
M.Sigley, Baker MS
Slope?
28
Unit 3
DEFINITION
THEOREM
Unit 3
Midsegment of a Triangle
 A segment whose endpoints are the
midpoints of two sides.
Sum of Exterior Angles of Polygon
360°
 Parallel to a side of the triangle and
has a measure equal to ½ of that
side.
26
M.Sigley, Baker MS
Unit 3
DEFINITION
25
M.Sigley, Baker MS
DEFINITION
Unit 3
Midsegment of a Trapezoid
 A segment whose endpoints are the
midpoints of the non-parallel sides.
Slope
y2 – y1
 Parallel to the bases and has a
measure that is ½ the sum of the
bases.
x2 - x1
midsegment= ½ (base 1 + base 2)
M.Sigley, Baker MS
28
M.Sigley, Baker MS
27
Unit 3
Unit 3
29
M.Sigley, Baker MS
30
Unit 3
Unit 3
M.Sigley, Baker MS
M.Sigley, Baker MS
Midpoint?
31
M.Sigley, Baker MS
32
Unit 3
THEOREM
THEOREM
Unit 3
Perpendicular Lines
 Two lines are perpendicular if and
only if they have slopes that are
negative reciprocals.
Parallel Lines
 Two lines are parallel if and only if
they have the same slope.
 The product of the slopes is -1.
(a/b and –b/a)
M.Sigley, Baker MS
30
29
M.Sigley, Baker MS
Unit 3
Unit 3
FORMULA
Midpoint
x2 + x1
2
M.Sigley, Baker MS
32
M.Sigley, Baker MS
,
y2 + y1
2
31
x
Related documents