Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATH00040 Formula Sheet Matrices and Vectors a b Matrix inverses: If ad − bc 6= 0, then c d !−1 = Determinants: det a11 a12 a13 a11 a12 a21 a22 ! a 11 a12 = a21 a22 a 22 a23 det a21 a22 a23 = a11 a32 a33 a31 a32 a33 1 ad − bc d −b −c a ! = a11 a22 − a12 a21 . a 21 a23 − a12 a31 a33 . a 21 a22 + a13 a31 a32 . p Length of a vector: If a = (a1 , a2 , a3 ), then kak = a21 + a22 + a23 . Dot product: If a = (a1 , a2 , a3 ) and , b3 ), then a · b = a1 b1 + a2 b2 + a3 b3 . b = (b1 , b2 v · w . Angle between vectors: θ = cos−1 kvk· kwk î ĵ k̂ Cross product: v × w = v1 v2 v3 , where v = (v1 , v2 , v3 ) and w = (w1 , w2 , w3 ). w1 w2 w3 Eigenvalues: To find the eigenvalues of A, solve det(A − λI) = 0. Eigenvectors: To! find the eigenvector v corresponding to the eigenvalue λ, solve Av = λv, x where v = . y Complex numbers Real part of a complex number: Re(a + bi) = a. Imaginary part of a complex number: Im(a + bi) = b. √ Modulus of a complex number: |a + bi| = a2 + b2 . Complex conjugate of a complex number: a + bi = a − bi. a + bi a + bi c − di Dividing complex numbers: = · . c + di c + di c − di c UCD 2015/16 1 of 3 Polar form: a + bi = r(cos(θ) +i sin(θ)), where r = |a + bi| and we find θ as follows. b First calculate φ = tan−1 . Then a θ = φ if a > 0 and b > 0, θ = φ − π if a < 0 and b < 0 and θ = π − φ if a < 0 and b > 0, θ = −φ if a > 0 and b < 0. Common values of tan−1 : −1 tan (0) = 0, −1 tan 1 √ 3 = π , 6 tan−1 (1) = π , 4 tan−1 √ π 3 = . 3 De Moivre’s formula: [r(cos(θ) + i sin(θ))]n = r n (cos(nθ) + i sin(nθ)). Roots of complex numbers: The n’th roots of r(cos(θ) + i sin(θ)) are 1 θ 2kπ θ 2kπ + i sin k = 0, 1, . . . , n − 1. zk = r n cos + + n n n n Differential Calculus f (x) f ′ (x) c 0 xn nxn−1 eax aeax 1 x a cos(ax) ln(ax) sin(ax) cos(ax) −a sin(ax) Comments Here c is any real number Here we must have ax > 0 Note the change of sign Table 1: Some common derivatives ′ The product rule for differentiation: (f = f ′ (x)g(x) + f (x)g ′ (x). g)(x) ′ f ′ (x)g(x) − f (x)g ′(x) f . (x) = The quotient rule for differentiation: g g 2 (x) dy du dy = · . The chain rule for differentiation: dx du dx The critical points of a function f occur at points x where f ′ (x) √ = 0. −b ± b2 − 4ac The solutions of the equation ax2 + bx + c = 0 are x = . 2a ′′ Classifying critical points: Local minima occur where f (x) > 0. Local maxima occur where f ′′ (x) < 0. f (xn ) . The Newton-Raphson method: xn+1 = xn − ′ f (xn ) c UCD 2015/16 2 of 3 Integral Calculus Z f (x) k f (x) dx kx + c 1 xn+1 + c n+1 ln(x) + c 1 ax e +c a 1 − cos(ax) + c a 1 sin(ax) + c a xn 1 x eax sin(ax) cos(ax) Comments Here k is any real number Here we must have n 6= −1 Here we must have x > 0 Note the change of sign Table 2: Some common integrals Evaluating definite integrals: ZIf F is an antiderivative of f then b f (x) dx = [F (x)]ba = F (b) − F (a). a du Integration by substitution: dx = . du/dx Z Z ′ Integration by parts: f (x)g (x) dx = f (x)g(x) − f ′ (x)g(x) dx. Z b Volume of solid of revolution: V = π f (x)2 dx. a Probability Sum rule for probability: P (A ∪ B) = P (A) + P (B) − P (A ∩ B). P (A ∩ B) . Conditional probability: P (A|B) = P(B) n k p (1 − p)n−k . Binomial distribution: P (X = k) = k λk e−λ Poisson distribution: P (X = k) = . k! a−µ b−µ Normal distribution: P (a 6 X 6 b) = P . 6Z6 σ σ c UCD 2015/16 3 of 3