Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CHAPTER 9 Chemical Equation Calculations Section 9.1 Interpreting a Chemical Equation 2. General Equation: (a) 2 mol A (b) 1LD × × 2A + 3B → 2C + D 2 mol C 2 mol A 3 L B 1 L D = 2 mol C = 3LB 4. General Equation: 3 A + B → 2 C (a) conservation of mass law: 1.50 g A + 1.65 g B = 3.15 g C (b) conservation of mass law: 9.45 g C – 4.50 g A = 4.95 g B 6. (a) MM of P4 MM of O2 MM of P2 O3 123.88 g P4 123.88 g P4 (b) MM of P4 MM of O2 MM of P2 O5 123.88 g P4 123.88 g P4 P4 (s) + 3 O2 (g) → 2 P2 O3 (s) = 4(30.97 g P) = 2(16.00 g O) = 2(30.97 g P) + 3(16.00 g O) + 3(32.00 g O2 ) + 96.00 g O2 219.88 g → → → 2(109.94 g P2 O3 ) 219.88 g P2 O3 219.88 g P4 (s) + 5 O2 (g) → 2 P2 O5 (s) = 4(30.97 g P) = 2(16.00 g O) = 2(30.97 g P) + 5(16.00 g O) + 5(32.00 g O2 ) + 160.00 g O2 283.88 g → → → = 123.88 g/mol = 32.00 g/mol = 109.94 g/mol = 123.88 g/mol = 32.00 g/mol = 141.94 g/mol 2(141.94 g P2 O3 ) 283.88 g P2 O3 283.88 g 2014 © Pearson Education, Inc. Chemical Equation Calculations 57 Section 9.2 Mole–Mole Problems 8. H2 (g) + Cl2 (g) → 2 HCl(g) Moles of H2 that react: × 5.00 mol HCl 10. 1 mol H2 2 mol HCl = 2.50 mol H2 3 Ba(s) + N2 (g) → Ba3 N2 (s) Moles of Ba(s) that react: 3 mol Ba 0.100 mol Ba3 N2 × 1 mol Ba N = 0.300 mol Ba 3 2 Moles of N2 (g) that react: 1 mol N2 0.100 mol Ba3 N2 × 1 mol Ba N = 0.100 mol N2 3 2 12. 2 C4 H1 0(g) + 13 O2 (g) → 8 CO2 (g) + 10 H2 O(g) Moles of C4 H1 0(g) that react: 2 mol C4 H1 0 2.50 mol H2 O × 10 mol H O = 0.500 mol C4 H1 0 2 Moles of O2 (g) that react: 13 mol O2 2.50 mol H2 O × 10 mol H O = 3.25 mol O2 2 Section 9.3 Types of Stoichiometry Problems 14. Given volume Unknown mass Type of Stoichiometry mass–volume problem 16. Given volume Unknown volume Type of Stoichiometry volume–volume problem 18. Given mass Unknown mass Type of Stoichiometry mass–mass problem 58 Chapter 9 2014 © Pearson Education, Inc. Section 9.4 Mass–Mass Problems 20. Cu(s) + 2 AgNO3 (aq) → Cu(NO3 )2 (aq) + 2 Ag(s) MM of AgNO3 = 169.88 g/mol MM of Ag = 107.87 g/mol 1 mol Ag 1.00 g Ag × 107.87 g Ag × 2 mol AgNO3 2 mol Ag × 169.88 g AgNO3 1 mol AgNO3 = 1.57 g AgNO3 22. 2 Zn(s) + O2 (g) → 2 ZnO(s) MM of O2 = 32.00 g/mol MM of ZnO = 81.39 g/mol 1 mol O2 32.00 g O2 1 mol ZnO 1.00 g of ZnO g ZnO × 81.39 g ZnO × 2 mol ZnO × 1 mol O = 0.197 g O2 2 24. 2 Bi(s) + 3 Cl2 (g) → 2 BiCl3 (s) MM of Cl2 = 70.90 g/mol MM of BiCl3 = 315.33 g/mol 1 mol BiCl3 3 mol Cl2 70.90 g Cl2 3.52 g BiCl3 × 315.33 g BiCl × 2 mol BiCl × 1 mol Cl = 1.19 g Cl2 3 3 2 26. 2 Co(s) + 3 HgCl2 (aq) → 2 CoCl3 (aq) + 3 Hg(l) MM of HgCl2 = 271.49 g/mol MM of Hg = 200.59 g/mol 3 mol HgCl2 271.49 g HgCl2 1 mol Hg 5.11 g Hg × 200.59 g Hg × 3 mol Hg × 1 mol HgCl = 6.92 g HgCl2 2 28. 2 Na3 PO4 (aq) + 3 Ca(OH)2 (aq) → Ca3 (PO4 )2 (s) + 6 NaOH(aq) MM of Ca(OH)2 = 74.10 g/mol MM of Ca3 (PO4 )2 = 310.18 g/mol 1 mol Ca3 (PO4 )2 3 mol Ca(OH)2 74.10 g Ca(OH)2 2.39 g Ca3 (PO4 )2 × 310.18 g Ca (PO ) × 1 mol Ca (PO ) × 1 mol Ca(OH) 3 4 2 3 4 2 2 = 1.71 g Ca(OH)2 2014 © Pearson Education, Inc. Chemical Equation Calculations 59 Section 9.5 Mass–Volume Problems 30. Fe2 (CO3 )3 (s) → Fe2 O3 (s) + 3 CO2 (g) MM of Fe2 (CO3 )3 = 291.73 g/mol 1 mol Fe2 (CO3 )3 3 mol CO2 22.4 L CO2 5.00 g Fe2 (CO3 )3 × 291.73 g Fe (CO ) × 1 mol Fe (CO ) × 1 mol CO 2 3 3 2 3 3 2 × 32. 1000 mL CO2 1 L CO2 = 1150 mL CO2 2 HgO(s) → 2 Hg(l) + O2 (g) MM of HgO = 216.59 g/mol 1 mol HgO 2.50 g HgO × 216.59 g HgO × 1 mol O2 22.4 L O2 2 mol HgO × 1 mol O2 × 1000 mL O2 1 L O2 = 129 mL O2 34. MnCl2 (s) + H2 SO4 (aq) → MnSO4 (aq) + 2 HCl(g) MM of MnCl2 = 125.84 g/mol 1 mol MnCl2 125.84 g MnCl2 1 L HCl 1 mol HCl 49.5 mL HCl × 1000 mL HCl × 22.4 L HCl × 2 mol HCl × 1 mol MnCl 2 = 0.139 g MnCl2 36. 2 H2 O2 (l) → 2 H2 O(l) + O2 (g) MM of H2 O2 = 34.02 g/mol 1 L O2 1 mol O2 55.0 mL O2 × 1000 mL O × 22.4 L O 2 2 × 2 mol H2 O2 34.02 g H2 O2 1 mol O2 × 1 mol H2 O2 = 0.167 g H2 O2 60 Chapter 9 2014 © Pearson Education, Inc. Section 9.6 Volume–Volume Problems 38. H2 (g) + I2 (g) → 2 HI(g) 2 mL HI 125 mL H2 × 1 mL H = 2.50 × 102 mL HI 2 40. 3 H2 (g) + N2 (g) → 2 NH3 (g) 3 mL H2 45.0 mL NH3 × 2 mL NH = 67.5 mL H2 3 42. 2 CO(g) + O2 (g) → 2 CO2 (g) 10.0 L CO × 44. 2 L CO2 2 L CO = 10.0 L CO2 2 Cl2 (g) + 3 O2 (g) → 2 Cl2 O3 (g) 3 L O2 1.75 L Cl2 O3 × 2 L Cl O 2 3 2.63 L O2 46. 1000 mL O2 1 L O2 = 2630 mL O2 2 SO2 (g) + O2 (g) → 2 SO3 (g) 25.0 L O2 48. × = 2.63 L O2 × 2 L SO2 1 L O2 = 50.0 L SO2 2 N2 (g) + 5 O2 (g) → 2 N2 O5 (g) 500.0 cm3 N2 O5 × 5 cm3 O2 3 3 2 cm3 N2 O5 = 1.250 × 10 cm O2 2014 © Pearson Education, Inc. Chemical Equation Calculations 61 Section 9.7 Limiting Reactant Concept 50. 2 NO(g) + O2 (g) → 2 NO2 (g) 1.00 mol NO 2.00 mol O2 × × 2 mol NO2 2 mol NO = 1.00 mol NO2 2 mol NO2 1 mol O2 = 4.00 mol NO2 The limiting reactant is NO because it produces less product. This reaction produces 1.00 mol NO2 . 52. N2 (g) + O2 (g) → 2 NO(g) × 0.125 mol N2 0.125 mol O2 × 2 mol NO 1 mol N2 = 0.250 mol NO 2 mol NO 1 mol O2 = 0.250 mol NO Neither N2 or O2 is a limiting reactant because each produces the same amount of product. This reaction produces 0.250 mol NO. 54. 2 H2 (g) + O2 (g) → 2 H2 O(l) 5.00 mol H2 × 2 mol H2 O 2 mol H2 = 5.00 mol H2 O 1.50 mol O2 × 2 mol H2 O 1 mol O2 = 3.00 mol H2 O The limiting reactant is O2 because it produces less water. This reaction produces 3.00 mol H2 O. 62 Chapter 9 2014 © Pearson Education, Inc. 56. 2 C2 H6 (g) + 7 O2 (g) → 4 CO2 (g) + 6 H2 O(g) 6 mol H2 O 2 mol C2 H6 = 3.00 mol H2 O 6 mol H2 O 7 mol O2 = 2.57 mol H2 O 1.00 mol C2 H6 × 3.00 mol O2 × The limiting reactant is O2 because it produces less water. This reaction produces 2.57 mol H2 O. 58. 2 Co(s) + 3 S(s) → (a) Co2 S3 (s) 1.00 mol Co × 1.00 mol S × 1 mol Co2 S3 2 mol Co 1 mol Co2 S3 3 mol S = 0.500 mol Co2 S3 = 0.333 mol Co2 S3 The limiting reactant is S because it produces less product. This reaction produces 0.333 mol Co2 S3 . After reaction: mol of Co = 1.00 – 2(0.333) mol of S = 1.00 – 3(0.333) mol of Co2 S3 = 0.00 + 0.333 (b) = 0.333 mol = 0.000 mol = 0.333 mol 2.00 mol Co × 1 mol Co2 S3 2 mol Co = 1.00 mol Co2 S3 3.00 mol S × 1 mol Co2 S3 3 mol S = 1.00 mol Co2 S3 Neither Co or S is a limiting reactant because each produces the same amount of product. This reaction produces 1.00 mol CoS. After reaction: mol of Co = mol of S = mol of Co2 S3 = 2.00 – 2.00 3.00 – 3.00 0.00 + 1.00 = 0.00 mol = 0.00 mol = 1.00 mol 2014 © Pearson Education, Inc. Chemical Equation Calculations 63 Section 9.8 Limiting Reactant Problems 60. FeO(l) + Mg(l) → Fe(l) + MgO(s) 1 mol FeO 10.0 g FeO × 71.85 g FeO × 1 mol Mg 40.0 g Mg × 24.31 g Mg × 1 mol Fe 55.85 g Fe × 1 mol FeO 1 mol Fe 1 mol Fe 1 mol Mg = 7.77 g Fe 55.85 g Fe × 1 mol Fe = 91.9 g Fe Therefore, FeO is the limiting reactant and will be consumed before Mg. This reaction produces 7.77 g Fe. 62. Fe2 O3 (l) + 2 Al(l) → 2 Fe(l) + Al2 O3 (s) 1 mol Fe2 O3 37.5 g Fe2 O3 × 159.70 g Fe O 2 3 175 g Al 1 mol Al × 26.98 g Al × × 2 mol Fe 1 mol Fe2 O3 2 mol Fe 2 mol Al × × 55.85 g Fe 1 mol Fe 55.85 g Fe 1 mol Fe = 26.2 g Fe = 362 g Fe Therefore, Fe2 O3 is the limiting reactant because it will be consumed before Al. This reaction produces 26.2 g Fe. 64. Mg(OH)2 (s) + H2 SO4 (l) → MgSO4 (s) + 2 H2 O(l) 1 mol Mg(OH)2 0.605 g Mg(OH)2 × 58.33 g Mg(OH) 2 1 mol MgSO4 × 1 mol Mg(OH) 2 × 120.38 g MgSO4 1 mol MgSO4 = 1.25 g MgSO4 1.00 g H2 SO4 1 mol H2 SO4 × 98.09 g H SO 2 4 × 1 mol MgSO4 1 mol H2 SO4 × 120.38 g MgSO4 1 mol MgSO4 = 1.23 g MgSO4 Therefore, H2 SO4 is the limiting reactant because it will be consumed before Mg(OH)2 . This reaction produces 1.23 g MgSO4 . 64 Chapter 9 2014 © Pearson Education, Inc. 66. 2 Al(OH)3 (s) + 3 H2 SO4 (l) → Al2 (SO4 )3 (aq) + 6 H2 O(l) × 3.00 g Al(OH)3 1 mol Al(OH)3 78.01 g Al(OH)3 × 6 mol H2 O 2 mol Al(OH)3 × 18.02 g H2 O 1 mol H2 O × 18.02 g H2 O 1 mol H2 O = 2.08 g H2 O × 1.00 g H2 SO4 1 mol H2 SO4 98.09 g H2 SO4 × 6 mol H2 O 3 mol H2 SO4 = 0.367 g H2 O Therefore, H2 SO4 is the limiting reactant because it will be consumed before Al(OH)3 . This reaction produces 0.367 g H2 O. 68. N2 (g) + 2 O2 (g) → 2 NO2 (g) 95.0 mL N2 × 2 mL NO2 1 mL N2 = 190 mL NO2 45.0 mL O2 × 2 mL NO2 2 mL O2 = 45.0 mL NO2 (1.90 × 102 mL NO2 ) Therefore, O2 is the limiting reactant because it will be consumed before N2 . This reaction produces 45.0 mL NO2 . 70. 2 N2 (g) + 3 O2 (g) → 2 N2 O3 (g) 45.0 mL N2 × 70.0 mL O2 × 2 mL N2 O3 2 mL N2 2 mL N2 O3 3 mL O2 = 45.0 mL N2 O3 = 46.7 mL N2 O3 Therefore, N2 is the limiting reactant because it will be consumed before O2 . This reaction produces 45.0 mL N2 O3 . 2014 © Pearson Education, Inc. Chemical Equation Calculations 65 72. 2 SO2 (g) + O2 (g) → 2 SO3 (g) 1.25 L SO2 × 2 L SO3 2 L SO2 = 1.25 L SO3 3.00 L O2 × 2 L SO3 1 L O2 = 6.00 L SO3 Therefore, SO2 is the limiting reactant because it will be consumed before O2 . This reaction produces 1.25 L SO3 . 74. 4 HCl(g) + O2 (g) → 2 Cl2 (g) + 2 H2 O(g) 10.0 L HCl × 2 L Cl2 4 L HCl 50.0 L O2 × 2 L Cl2 1 L O2 = 5.00 L Cl2 (1.00 × 102 mL Cl2 ) = 100 L Cl2 Therefore, HCl is the limiting reactant because it will be consumed before O2 . This reaction produces 5.00 L Cl2 . Section 9.9 Percent Yield 76. Actual yield: 3.50 g acetone; theoretical yield: 3.67 g acetone 3.50 g Percent yield: 3.67 g × 100% = 95.4% 78. Actual yield: 0.725 g K2 CO3 ; theoretical yield: 0.690 g K2 CO3 Percent yield: 66 Chapter 9 0.725 g 0.690 g × 100% = 105% 2014 © Pearson Education, Inc. General Exercises 80. The units associated with molar volume are liters per mole (L/mol). 82. (NH4 )2 Cr2 O7 (s) → Cr2 O3 (s) + 4 H2 O(l) + N2 (g) MM of (NH4 )2 Cr2 O7 = 1.54 g (NH4 )2 Cr2 O7 × 252.10 g/mol 1 mol (NH4 )2 Cr2 O7 252.10 g (NH4 )2 Cr2 O7 22.4 L N2 × 1 mol N 2 84. × 1 mol N2 1 mol (NH4 )2 Cr2 O7 = 0.137 L N2 (137 mL N2 ) 3 MnO2 (s) + 4 Al(s) → 3 Mn(s) + 2 Al2 O3 (s) MM of Mn = 54.94 g/mol MM of Al2 O3 = 101.96 g/mol 1.00 kg Mn 1000 g Mn 1 kg Mn × × × 86. 1 mol Mn 54.94 g Mn × 101.96 g Al2 O3 1 mol Al2 O3 2 mol Al2 O3 3 mol Mn = 1240 g Al2 O3 Sb2 S3 (s) + 6 HCl(aq) → 2 SbCl3 (aq) + 3 H2 S(g) MM of Sb2 S3 = 339.71 g/mol MM of SbCl3 = 228.10 g/mol 3.00 g Sb2 S3 × 1 mol Sb2 S3 339.71 g Sb2 S3 × 2 mol SbCl3 1 mol Sb2 S3 × 228.10 g SbCl3 1 mol SbCl3 = 4.03 g SbCl3 2014 © Pearson Education, Inc. Chemical Equation Calculations 67 Challenge Exercises 88. C 3 H8 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2 O(g) MM of C3 H8 = 10.0 g C3 H8 × 44.11 g/mol 1 mol C3 H8 44.11 g C3 H8 × 3 mol CO2 1 mol C3 H8 × 22.4 L CO2 1 mol CO2 = 15.2 L CO2 at STP 90. 2 H2 O(l) → 2 H2 (g) + O2 (g) MM of H2 O = 18.02 g/mol 100.0 mL H2 O × 1.00 g H2 O 1 mL H2 O × 1 mol H2 O 1 mol O2 × 18.02 g H2 O 2 mol H2 O × = 62.2 L O2 at STP Online Exercises 92. 68 China produced the most sulfuric acid in 2000; about 24 million tons. Chapter 9 2014 © Pearson Education, Inc. 22.4 L O2 1 mol O2