Download Quark Model

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quark Model
Outline
Outline
Hadrons
Hadrons known in 1960
Isospin, Strangeness
Quark Model
3 Flavours u, d, s
Mesons
Pseudoscalar
and vector mesons
Baryons
Decuplet, octet
Hadron Masses
Spin-spin coupling
Heavy Quarks
Charm, bottom,
Heavy quark
Mesons
Top quark
Motivation for Quark Model
Particle “Zoo” proliferates
“ … the finder of a new particle used to be rewarded
by a Nobel prize, but such a discovery ought to be
punished by a $10000 fine”
Lamb, 1955
Nuclear and Particle Physics
Franz Muheim
1
Isospin
Nucleons
Proton and neutron have almost equal mass
Strong nuclear force is charge independent
Vpp≈ Vpn ≈ Vnn
Isospin
p and n form part of single entity with
isospin ½
analogous to ↑ and ↓ of spin ½
Isospin I is conserved in strong interactions
Addition by rules of angular momentum
Isospin Multiplets
Useful for classification of hadrons, see slide 1
2I+1 states in a isospin muliplet |I, I3 >
Quark Model
Gives natural explanation for Isospin
I 3 = 12 (nu − nd + nd − nu )
ni number of i quarks
Isospin works well
Masses of u and d quark are almost equal
Nuclear and Particle Physics
Franz Muheim
2
Isospin Conservation
Conservation Law
Isospin I is conserved in strong interactions
Allows to calculate ratios of cross sections and
branching fractions in strong interactions
Delta(1232) Resonance
Mass 1232 MeV
Width 120 MeV
Production
π + p → ∆+ + → π + p
π − p → ∆0 → π − p
π − p → ∆0 → π 0 n
Isospin addition
π+ p:
1,1
π−p:
1,−1
π 0n :
1,0
1
2
, 12 =
, 32
, 12 =
1 3
3 2
,− 12 −
2 1
3 2
,− 12
,− 12 =
2 3
3 2
,− 12 +
1 1
3 2
,− 12
1
2
1
2
3
2
Matrix element
M3 =
3
2
H3
3
2
depends on I, not I3
M1 =
1
2
H1
1
2
2
3
1
(
)
M (π p → ∆ → π p ) = M + M
Cross sections
M (π p → ∆ → π n ) = M − M
2
σ∝ M
σ (π p → ∆ → π p ) ≈ 200 mb ≈ 9x
In agreement with
σ (π p → ∆ → all ) ≈ 70 mb ≈ 3x
I=3/2 Isospin prediction σ (π p → ∆ → π p ) ≈ 23 mb ≈ 1x
M π + p → ∆+ + → π + p = M 3
−
−
0
+
0
++
−
−
Nuclear and Particle Physics
−
0
Franz Muheim
1
3
2
3
3
2
3
3
+
0
0
−
3
1
Strangeness
Strange Particles
Discovered in 1947
V, “fork”, and K, “kink”
Rochester and Butler
Production of V(K0, Λ) and K±
π − p → K 0 Λ τ = O (10 −23 s )
via strong interaction,
K 0 → π +π − τ K = 0.89 × 10 −10 s
weak decay
0
Associated Production
Λ → π − p τ Λ = 2.63 × 10 −10 s
Strange particles produced in pairs
Pais
Strangeness S
Additive quantum number
Gell-Mann Nishijima
Conserved in strong and electromagnetic interactions
Violated in weak decays
S = 1: K +, K0
Non-zero for Kaons S = 0 : π , p, n, ∆ , ...
S = −1 : K − , K 0 , Λ , Σ , ...
S = −2 : Ξ
and hyperons
S = ns − ns
Naturally explained in quark model
Nuclear and Particle Physics
Franz Muheim
4
Quark Model
33 Quark
Quark Flavours
Flavours u,
u, d,
d, ss
1964 - introduced by Gell-Mann & Zweig
Quark
Charge
Q [e]
Isospin
|I, I3 >
Strangeness S
up (u)
+2/3
|½, +½ ›
0
down (d)
-1/3
|½, -½ ›
0
strange (s)
-1/3
|0,0›
-1
Gell-Mann
Zweig
Charge, Isospin and Strangeness
Additive quark quantum numbers are related
not all independent
Q = I3 + ½(S + B)
Gell-Mann Nishijima predates quark model
valid also for hadrons
Baryon number B
quarks
B = +1/3
anti-quarks B = -1/3
Hypercharge Y = S + B is useful quantum number
Quark model gives natural explanation
Isospin
and Strangeness
Nuclearfor
and Particle
Physics
Franz Muheim
5
Mesons
Bound qq States
Zero net colour charge
Zero net baryon number
Angular Momentum L
B = +1/3 +(-1/3) = 0
For lightest mesons
Ground state
L = 0 between quarks
Parity P
Intrinsic quantum number of quarks and leptons
P=+1 for fermions
P=-1 for anti-fermions
P (qq ) = Pq Pq (− 1)
L
= (+ 1)(− 1)(− 1) = −1 for L = 0
L
Total
Angular Momentum J
r r
J = L+ S
S=0
Î J P = 0S=1
Î J P = 1-
include quark spins
qq spins anti-aligned ↑↓ or ↓↑
Pseudo-scalar mesons
qq spins aligned ↑↑ or ↓↓
Vector mesons
Quark flavours
non-zero flavour states
zero net flavour states
uu , dd , ss
have identical additive quantum numbers
Physical states are mixtures
ud , us , du , ds , su , sd
Nuclear and Particle Physics
Franz Muheim
6
Mesons
Pseudoscalar Mesons JP = 0-
Strangeness S
Kaons:
K+, K0, anti-K0, KPions: π+, π0, πEtas: η, η’
Isospin I3
Strangeness S
Vector Mesons JP = 1Kstar:
K*+, K*0, anti-K*0, K*rho: ρ+, ρ0, ρomega/phi: ω, φ
Isospin I3
Nuclear and Particle Physics
Franz Muheim
7
Baryon Decuplet
Baryon Wavefunction
Ψ(total) = Ψ(space) Ψ(spin) Ψ(flavour) Ψ(colour)
Space
symmetric - L = 0
Flavour
symmetric, e.g. uuu, (udu+duu+uud)/√3
Spin
symmetric
all 3 quarks aligned → S = 3/2
Colour
antisymmetric
Total antisymmetric - obeys Pauli Exclusion Principle
Baryon Decuplet JP = 3/2+
<Mass>
Delta
Strangeness S
uuu
1232 MeV
Sigma* 1385 MeV
Cascade* 1533 MeV
Omega- 1672 MeV
Isospin
Quark model predicted unobserved state Ω- (sss)
Nuclear and Particle Physics
Franz Muheim
8
Baryon Octet
Baryon Wavefunction
Ψ(space) symmetric (L = 0) Ψ(colour) antisymmetric
Mixed symmetric Ψ(spin, flavour)
Flavour
mixed symmetric: e.g. (ud - du) u/√2
Spin
as flavour: e.g. (↑↓ - ↑↓) ↑/√2
Spin-flavour e.g. (u↑d↓ - d↑u↓ - u↓d↑ + d↓u↑) u↑/√6
Symmetrisation by cyclic permutations
Ψ(proton, s=+½) = ( 2u↑u↑d↓ - u↑u↓d↑- u↓u↑d↑
+2d↓u↑u↑ - d↑u↑u↓- d↑u↓u↑
+2u↑d↑u↓ - u↑d↓u↑- u↓d↑u↑) /√18
Baryon Octet JP = ½+
Strangeness S
<Mass>
938.9 MeV
p,n
Sigma 1193 MeV
Lambda 1116 MeV
Cascade 1318 MeV
(Xi)
Isospin
Lightest baryons
Antibaryons ( p, n , ...)
Nuclear and Particle Physics
stable or long-lived
also form Octet and Decuplet
Franz Muheim
9
Discovery of ΩΩ- (sss) Hyperon
Hyperon - baryon with at least one s quark
Quark model predicted existence and mass
Missing member of baryon decuplet JP = 3/2+
discovered 1964 at Brookhaven
K- beam onto hydrogen target
Bubble Chamber detector
K − + p → .Ω − + K − + K 0
a Ξ 0 +π +
a Λ0 + π 0
aγ +γ
a e+e−
a e+e−
Nuclear and Particle Physics
aπ−p
Franz Muheim
10
Hadron Masses
Quark Masses
u, d & s quark masses light at short distance
mu < md ~ 5 MeV ms ~ 100 MeV
q2 > 1 GeV2
Constituent mass is relevant for quark model
q2 < 1 GeV2
mu = md ~ 300 MeV ms ~ 500 MeV
Meson Masses
m(K) > m(π)
due to ms > mu, md
m(ρ) > m(π)
same quark content e.g. ρ+, π+: (u-dbar)
Mass difference is due to quark spins
Chromomagnetic Mass Splitting
Spin-spin coupling of quarks
S1 = S2 = 1/2
analogous to hyperfine splitting in el. mag. interaction
r
r
r r
r Sr ⋅ S
1
2
S1 ⋅ S 2
S
m
q
q
m
m
=
+
+
1 ⋅ S2
1 m +2 A A
∆E ∝ α S
m (qq ) = m1 +
2
m2
m1 m 2
m1mm
21
r r
r2 r2 1
1 r
S1 ⋅ S 2 = S 2 − S1 − S 2 = ( S ( S + 1) − S1 ( S1 + 1) − S 2 ( S 2 + 1))
2
2
3 1
⎧
S =1
⎪ 1− 4 = 4
=⎨
Mass
3
3
⎪ 0− = −
S=0
4
4
⎩
( )
(
)
Meson Masses
mu = md = 310 MeV
ms = 483 MeV
A = (2mu)2 · 160 MeV
Excellent agreement
What about eta(‘)?
Nuclear and Particle Physics
[MeV]
Meson Prediction Experiment
π
140
138
K
484
496
ρ
780
770
ω
780
782
K*
896
894
φFranz Muheim 1032
1019
11
Heavy Quarks
Charm and bottom quarks
Charmonium (c-cbar) --- see QCD lecture
1977 Discovery of Upsilon States
Interpretation is
Bottomonium (b-bar)
Spectroscopy
Charmonium
and Upsilon
mc ~ 1.1 … 1.4 GeV
mb ~ 4.1 … 4.5 GeV
Heavy-light Mesons and Baryons
Charmed (c-quark) hadrons
J P = 0−
D 0 = cu ,
D + = cd , Ds+ = cs ,
J P = 1−
D *0 = cu ,
D *+ = cd , Ds*+ = cs ,
1
J =
2
−
Λ+c = cud
P
Bottom-quark hadrons
J P = 0−
B + = ub ,
B 0 = db , Bs0 = sb ,
J P = 1−
B * + = ub ,
B *0 = db , Bs*0 = sb ,
1
J =
2
P
−
Λ0b = bud
Top quark
Decays before forming bound states
174 Physics
GeV
discovered
in 1995 at Fermilab
mt ~Particle
Nuclear and
Franz Muheim
12
Related documents