Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mathematics (MA-002) Assignment 3: Partial Differential Equations Spring Semester 2015-16 1. Find the partial differential equations by eliminating the arbitrary constants from the following equations: √ (a) z = ax + y x2 − a2 + b (c) 2z = 2 x a2 + 2 y b2 (b) z = axey + 12 a2 e2y + b (d) log(az − 1) = x + ay + b 2. (a) Find the partial differential equation of all planes which are at a constant distance from origin. (b) Find the partial differential equation of the set of all right circular cones whose axes coincide with z-axis. (c) Find the partial differential equation of all cones which have their vertex at the origin. (d) Find the partial differential equation of the family of planes, the sum of whose x,y,z intercepts is equal to unity. 3. Find the partial differential equation by eliminating arbitrary functions from the following relations (a) z = f (xy) + g( xy ) y−b (d) f ( x−a z−c , z−c ) = 0 (b) f (x + y + z, x2 + y 2 + z 2 ) = 0 (c) lx + my + nz = φ(x2 + y 2 + z 2 ) (e) f (x + y + z) = xyz 4. Find the general solution of the following partial differential equations (a) cos(x + y)p + sin(x + y)q = z (d) z(xy + z 2 )(px − qy) = x4 (b) py + qx = xyz 2 (x2 − y 2 ) (c) (x2 + 2y 2 )p − xyq = xz, (e) (x2 − y 2 − yz)p + (x2 − y 2 − zx)q = z(x − y) 5. Find the general solution of the following Lagrange linear equations (a) (y + z)p + (z + x)q = x + y, (b) (x2 − yz)p + (y 2 − zx)q = z 2 − xy (c) px + qz + y = 0 p (d) (p − q)z = z 2 + (x + y)2 (e) px + qy = z − a (x2 + y 2 + z 2 ) 6. Solve the following partial differential equations ; (a) p + q + pq = 0, (b) p2 + 6p + 2q + 4 = 0 (c) p2 + q 2 = npq (d) p = eq , (e) p2 + q 2 = m2 . 7. Solve the following partial differential equations ; p p (a) z = px + qy + 4 1 + p2 + q 2 , (b) z = px + qy + 1 + αp2 + βq 2 (c) pm sec2m x + z l q n coesc2n y = z lm/(m−n) (d) z = x2 p2 + y 2 √ (e) z = px + qy + 2 pq (8) Solve the following partial differential equations (a) p(1 − q 2 ) = q(1 − z) (b) z 2 (p2 + q 2 + 1) = 1 (c) 4(1 + z 3 ) = 9z 4 pq (d) p(1 + q) = qz (e) p2 = z 2 (1 − pq) 1 (9) Solve the following partial differential equations (a) px + q = p2 (b) p2 y(1 + x2 ) = qx2 (d) q = px + p 2 (c) q(p − cosx) = cosy (e) x(1 + y)p = y(1 + x)q Answers 1. (a) ∂z = a ∂y + xy ∂z ∂z ∂x ∂y 2. (a) z = px + qy + a (b) ∂z ∂y ∂z ∂z 2 = x ∂x + ( ∂x ) (c) 2z = px + qy (d) (1 + p p2 + q 2 + 1, ∂z ∂z (b) y ∂x = x ∂y , ∂z ∂z ∂y ) ∂x ∂z = z ∂y (c) px + qy = z (d) px + qy − z = pq p+q−pq ∂z 3. (a) x2 r − y 2 t + xp − yq (b) p(y + z) − (x + z)q = x − y (c) (nx − mz) ∂x + (lz − nx) ∂z ∂y = mx − ly (d) (x − a)p + (y − b)q = z − c (e) x(y − z)p + y(z − x)q = z(x − y) 4. (a) φ[z √ 2 (c) f (yz, x2 y 2 + y 4 ) = 0 (d) φ(xy, x4 − z 4 − 2xyz 2 ) = 0 2 5. (a) f ( x−y y−z , (x − y) (x + y + z)) = 0 (d) f (x+y, 2 π y−x cot( x+y (sin(x + y) + cos(x + y))] = 0 2 + 8 ), e 1 2 (b) f (x2 − y 2 , y2 + log z 2 + (x + y)2 )=0 (e) φ( xy , √ x ) x2 +y 2 +z 2 2 =0 )=0 (e) φ(z − x + y, x z−y 2 (b) f (xy + yz + zx, x−y y−z ) = 0 a−1 2 1 z(x2 −y 2 ) ) (c) f (y 2 + z 2 , x etan −1 ( y ) z )=0 =0 2 + ψ(a) (b) z − ax + ( a2 + 3a + 2)y − ψ(a) = 0 √ (c) z − ax − a2 (n + n2 − 4)y − ψ(a) = 0 (d) z − ax − log(ay) − ψ(a) = 0 p (e) z = ax + y (m2 − a2 ) + φ(a). 6. (a) z = ax − a 1+a y p 7. (a) z − ax − ψ(a)y − 4 1 + a2 + (ψ(a))2 = 0 (c) m−n−l m−n m−n m−n−l z √ 1−a2 a (d) x y = a4 (2x + sin2x) + = ψ(a)e √ 2 z 1 (1−am ) n 4 (b) z − ax − ψ(a)y − p αa2 + β(ψ(a))2 + 1 = 0 (2y − sin2y) + ψ(a) p (e) z − ax − ψ(a)y − 2 (a)ψ(a) = 0 8. (a) 4(1 − a + az) − (x + ay + φ(a))2 = 0 (b) (1 + a2 )(1 − z 2 ) − (x + ay + φ(a))2 = 0 (c) a(1 + z 3 ) − (x + ay + φ(a))2 = 0 (d) az − 1 = φ(a)ex+ay √ 1 (e) ±(x + ay + φ(a)) = − sinh−1 ( z√ ) + 1 + az 2 a √ √ 9. (a) z = 41 (x2 + x x2 + 4a) + a log(x + x x2 + 4a) + ay + ψ(a) √ √ (b) 2z = 2 a 1 + x2 + ay 2 + b = 0 (c) z − ax − sinx − a1 siny + b = 0 √ √ 2 (d) z − x4 ± 21 ( x2 x2 + 4a + 2a log(x + x2 + 4a)) + ay + φ(a) = 0 (e) z = a(log xy + (x + y)) + φ(a). 2