Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs: Appendix S1 James M. McCaw∗†, James G. Wood‡, Christopher T. McCaw∗ and Jodie McVernon∗ May 2, 2008 Contents S1 Details of the model S1.1 The single-drug model . . . . . . . . . . . . . S1.1.1 ODEs . . . . . . . . . . . . . . . . . . S1.1.2 R0 calculation . . . . . . . . . . . . . S1.2 Multi-drug models . . . . . . . . . . . . . . . S1.2.1 Random allocation and cycling models S1.2.2 Treatment and Prophylaxis model . . . . . . . . . S2 Results S2.1 Alternative scenarios . . . . . . . . . . . . . . . S2.1.1 Extremely high fitness and lower seeding S2.1.2 A reduced symptomatic proportion . . . S2.2 Sensitivity Analysis . . . . . . . . . . . . . . . . S2.2.1 Single drug model . . . . . . . . . . . . S2.2.2 Random allocation model . . . . . . . . S2.2.3 Treatment and Prophylaxis model . . . . S2.2.4 Comparing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 . 6 . 7 . 8 . 8 . 15 . . . . . . . . 19 19 19 21 21 22 24 26 27 . . . . . . . . A Multi-drug model construction 28 A.1 Random allocation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 A.2 Treatment and Prophylaxis model . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References 44 ∗ Vaccine and Immunisation Research Group, Murdoch Childrens Research Institute and Melbourne School of Population Health, The University of Melbourne, Victoria, Australia. † Corresponding author. Electronic mail: [email protected], Phone: +61 3 8344 9145, Fax: +61 3 9348 1827. ‡ School of Public Health & Community Medicine, University of New South Wales and National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Childrens Hospital at Westmead and the University of Sydney, New South Wales, Australia. 1 Abstract We provide details of the models used in the main text, explain some of the results in greater detail, perform a sensitivity analysis for each model and explore a number of alternate scenarios to demonstrate the general nature of the results presented in the main text. S1 Details of the model The models used in this paper are extensions to the contact model described in detail in McCaw and McVernon (2007). Here we detail how asymptomatic infections and development of antiviral resistance is accounted for within the single-drug model. We also provide R0 calculations for the single-drug model. The multi-drug model equations are presented for reference, while details of their construction are left to Appendix A. S1.1 The single-drug model We have states Ipy with y ∈ {w, r} representing symptomatic infections for those taking prophylaxis (p) and infected with the wild-type (y = w) or resistant-type (y = r) strain. States Ayp represent equivalent asymptomatic infections. w We also have the state Inp,t representing symptomatic infections with the wild-type strain for those not taking prophylaxis (np), but being provided with antiviral drugs as treatment (t). For symptomatic infections with the wild-type strain that are not provided with antiviral drugs at all, w . Symptomatic infections with the resistant-type strain may or may not we have the state Inp,nt r be provided with treatment but it has no effect so we require just one state Inp . Asymptomatic infections are not able to be identified and provided with antiviral drugs and so we only require two states Aynp with y ∈ {w, r}. The force of infection arises from each of these nine infectious classes: w w λw p = βei Ip + χAp λw np,nt λw np,t r = = λ = (S1) w β Inp,nt + χAw np w βet Inp,t r βφ Ipr + Inp +χ (S2) (S3) Arp + Arnp , (S4) where φ is the relative transmissibility of the resistant strain relative to uncontrolled wild-type and χ is the relative transmissibility of asymptomatic infections. Other parameters are defined as in McCaw and McVernon (2007). Infections arising from these nine states cause susceptible individuals (S) to become exposed (Exy with x ∈ {p, np} and y ∈ {w, r}). Exposed individuals will become infectious after a latent period of mean duration 1/ω days. New infections (I and A states) have contacts (Cxy states) which may or may not be exposed. The mean infectious period is 1/γ days. A susceptible, upon exposure, can proceed down a number of paths, dependent upon the characteristics of the infectee (wild-type, resistant-type) and whether or not they are provided with post-exposure prophylaxis. A proportion of exposures, α, are symptomatic. Our model allows for this proportion to depend upon the nature of the strain (w or r) and the provision of prophylaxis (p or np). Resistance development (“seeding”) is captured by two parameters. A proportion, ρt , of those w w exposed to wild-type virus and treated (αnp ψEnp ) convert to become symptomatic resistant-strain 2 r infectors (Inp ). A proportion, ρp , of those exposed to wild-type virus and taking prophylaxis (Epw ) convert to become either symptomatic or asymptomatic resistant-strain infectors (Ipr or Arp ). Figures S1 and S2 show the possible paths a susceptible can take on becoming infectious. These diagrams are used to construct the model equations that follow. 3 S es K w (1 − ρp ) Epw αpw Ipw (1 − αpw ) Aw p ρp (1 − K w ) αr Ipr (1 − αr ) Arp w Enp w αnp ψ (1 − ρt ) w Inp,t ρt (1 − ψ) r Inp w (1 − αnp ) w Inp,nt Aw np Figure S1: Tree diagram for wild strain exposures 4 Kr S αr Epr Ipr (1 − αr ) Arp (1 − K r ) αr r Inp r Enp (1 − αr ) Arnp Figure S2: Tree diagram for resistant strain exposures We introduce four contact states Cxy (x ∈ {p, np}, y ∈ {w, r}) which classify a contact by their own type if they were to become infectious. We introduce: Θw p = Θw np = Θrp = Θrnp = es Cpw S w N Cpw + Cnp w Cnp S w N Cpw + Cnp Cpr S r r Cp + Cnp N r Cnp S . r N Cpr + Cnp (S5) (S6) (S7) (S8) Contacts of wild-type infectives who are provided with AV drugs (Cpw ) have a reduced susceptibility accounted for by the factor es in the equation for Θw p . All other contacts (those not on prophylaxis and those on prophylaxis but in contact with resistant-strain infectives) remain fully susceptible to infection. 5 S1.1.1 ODEs The model equations are: dS w r = − λw Θw Θrp + Θrnp p + Θnp + λ dt dCpw w w = κω αpw (1 − ρp ) Epw + [(1 − ρt ) ψ + (1 − ψ)] αnp Enp − δCpw − λw Θw p dt w dCnp w w = κ (1 − ) ω αpw (1 − ρp ) Epw + [(1 − ρt ) ψ + (1 − ψ)] αnp Enp dt w w w + κω 1 − αpw (1 − ρp ) Epw + 1 − αnp Enp − δCnp − λw Θw np r r dCpr r w w = κω α Ep + Enp + αr ρp Epw + αnp ρt ψEnp − δCpr − λr Θrp dt r dCnp r w w + αr ρp Epw + αnp ρt ψEnp = κ (1 − ) ω αr Epr + Enp dt r r − λr Θrnp + (1 − αr ) ρp Epw − δCnp + κω (1 − αr ) Epr + Enp (S9) (S10) (S11) (S12) (S13) and, for x ∈ {p, np}, y ∈ {w, r} dExy = λy Θyx − ωExy dt (S14) and, for symptomatic infectious states dIpw dt w dInp,t dt w dInp,nt dt dIpr dt r dInp dt = αpw (1 − ρp ) ωEpw − γI Ipw (S15) w w w = αnp (1 − ρt ) ψωEnp − γI Inp,t (S16) w w w = αnp (1 − ψ) ωEnp − γI Inp,nt (S17) = αr ρp ωEpw + αr ωEpr − γI Ipr (S18) w w r r ρt ψωEnp + αr ωEnp − γI Inp = αnp (S19) and, for asymptomatic infectious states dAw p dt dAw np dt dArp dt dArnp dt = 1 − αpw (1 − ρp ) ωEpw − γA Aw p (S20) w w = 1 − αnp ωEnp − γA Aw np (S21) = (1 − αr ) ρp ωEpw + (1 − αr ) ωEpr − γA Arp (S22) r = (1 − αr ) ωEnp − γA Arnp (S23) and, for x ∈ {p, np}, y ∈ {w, r} y dRIx = γI Ixy dt y dRAx = γA Ayx dt (S24) (S25) 6 and finally, for the depletion of the finite stockpile of AV drugs, w w dO w w r r = −κω αpw Epw + αnp Enp + αr Epr + Enp − ψω αnp Enp + αr Enp . dt S1.1.2 (S26) R0 calculation Define the column vector (0 is transpose) w w r r r 0 ~ = Ipw Inp,t Inp,nt Ipr Inp Aw Aw X p np Ap Anp (S27) We may ignore the E states by factoring them into the right hand side. Defining this construction ˙ ~˙ + appropriate parts of E) ~˙ allows us to write: (Y~ ≡ X n o ˙ ~ Y~ = [9 × 9] /γ − I~ γ X (S28) and R0 is the maximum eigenvalue of the 9 × 9 matrix. We construct this matrix as a linear combination of tensor products of force of infection row vectors, λ~w and λ~r , with suitable column vectors constructed from the differential equations, F~w and F~r : n o w w r r ~ ~ ~ ~ R0 = max eigenvalue of F λ + F λ /γ , (S29) where λ~w = β ei et 1 0 0 ei χ χ 0 0 λ~r = βφ 0 0 0 1 1 0 0 χ χ , and (S30) (S31) αpw (1 − ρp ) es K w 0 w w αnp 0 w(1 − ρt ) ψ (1 − Kw ) αnp (1 − ψ) (1 − K ) 0 r w r r α ρ e K α K p s w w r r and F~r = α (1 − K ) , ρ ψ (1 − K ) α (S32) F~w = t np 1 − αw (1 − ρp ) es K w 0 p 1 − αw (1 − K w ) 0 np r r r w (1 − α ) K (1 − α ) ρp es K r r (1 − α ) (1 − K ) 0 x where K w and K r are the steady state proportions of Cpx / Cpx + Cnp (x ∈ {w, r}), which, in the w w x case αp = αnp , are simply αnp (x ∈ {w, r}). The matrix F~w λ~w + F~r λ~r can be put into block-triangular form, effectively breaking the eignevalue calculation into two separate calculations, one from each of F~w λ~w and F~r λ~r . As each of these matrices is, by construction, rank-1 the eigenvalues of the system are given by the scalar product of F~x and λ~x (x ∈ {w, r}). From x = w, we obtain the reproduction number for the controlled wild strain; from x = r, the reproduction number for the reduced-fitness resistant strain: αpw + 1 − αpw χ (1 − ρp ) es ei K w β w w + αnp [et (1 − ρt ) ψ + (1 − ψ)] + 1 − αnp χ (1 − K w ) , R0 = × max γ r r φ (α + (1 − α ) χ) (S33) 7 This expression deserves some explanation. The first eigenvalue is for the wild-type strain. It’s form is the appropriate linear combination of prophylaxis (K w ) and non-prophylaxis (1 − K w ) sectors. The prophylaxis sector is itself a linear combination of symptomatic and asymptomatic parts, capturing the reduced susceptibility (es ) and reduced infectivity (ei ) due to prophylaxis, as well as the leakage to the resistant sector. The non-prophylaxis sector is, again, a linear combination of symptomatic and asymptomatic parts. Furthermore, the symptomatic part is itself a linear combination of treated (ψ) and untreated (1 − ψ) components. The treatment part captures leakage to the resistant sector. The second reproduction number is for the resistant strain. It is the appropriate linear combination of reproduction numbers for the symptomatic resistant-strain infections (βφ/γ) and asymptomatic resistant-strain infections (βφχ/γ). The simple form arises due to the fact that antiviral drugs have no impact on the resistant strain. S1.2 Multi-drug models The multi-drug models build upon the single-drug model just detailed. More states are included to account for the four possible strains in cicurlation (wild-type, two single-drug resistant types and multi-drug resistant type). Parameters relating to the resistant strain (φ, ρt and ρp as well as αr ) pick up labels to tie them to the drug in use and the strain in circulation. S1.2.1 Random allocation and cycling models We have four strains in circulation: with wild-type virus (w label), drug 1 resistant virus (r1 label), drug 2 resistant virus (r2 label) and multiple resistant virus (r12 label). We introduce new parameters: • φr1 ,r2 ,r12 — the transmissibility of the (drug 1, drug 2, multiple)-resistant strain relative to the transmissibility of the uncontrolled wild-type strain. • ρt1,t2 — the proportion of offspring (that is, secondary infectives) of treated wild-type infectives who carry the drug 1 (drug 2) resistant strain. • ρp1,p2 — the proportion of offspring of breakthrough (prophylaxis) wild-type infectives who carry the drug 1 (drug 2) resistant strain. We assume that all offspring of r1 -resistant infectives are either r1 -resistant or r12 -resistant. Similarly, all offspring of r2 -resistant infectives are either r2 -resistant or r12 -resistant. All offspring of r12 -resistant infectives are r12 -resistant. The provision of AV drug 1 (drug 2) as prophylaxis to contacts of drug 2 (drug 1) resistant infectives is assumed to have the same protective effect as provision of prophylaxis to contacts of wild-type infectives. Prophylaxis with drug 1 (drug 2) of contacts of drug 1 (drug 2) resistant infectives has no protective effect. Similarly, the provision of AV drug 1 (drug 2) as treatment to drug 2 (drug 1) resistant infectives is assumed to have the same effect as provision of treatment to wild-type infectives. Treatment with drug 1 (drug 2) has no effect on infectives carrying the drug 1 (drug 2) resistant strain. Provision of AV drugs as prophylaxis to contacts or as treatment to infectives carrying the multiple-resistant strain is assumed to have no effect on either infectiousness or susceptibility. In the random allocation model, which drug is used for treatment or prophylaxis is chosen at random, assumed to be a function of the stockpile size of each drug. For treatment or prophylaxis, 8 drug 1 will be provided a proportion f1 (O1 , O2 ) of the time and drug 2 a proportion f2 (O1 , O2 ) of the time. In the simplest case, f1 and f2 are given by the proportion of the stockpile that is of type 1 or 2: f1 = O1 / (O1 + O2 ) f2 = O2 / (O1 + O2 ) . (S34) (S35) In the cycling model, when using drug 1 we set f1 = 1, f2 = 0 and vice-versa when using drug 2. The force of infection arises from 30 infectors: w w (S36) + χA = βe I λw i1 p1 p1 p1 w w w λp2 = βei2 Ip2 + χAp2 (S37) w λw np,t1 = βet1 Inp,t1 (S38) w λw np,t2 = βet2 Inp,t2 λw np,nt λrp11 λrp21 1 λrnp,t1 1 λrnp,t2 1 λrnp,nt λrp12 λrp22 2 λrnp,t1 2 λrnp,t2 2 λrnp,nt r12 λ = = = = = = = = = = = = (S39) w β Inp,nt + χAw np r1 r1 βφ Ip1 + χArp11 r1 βφr1 ei2 Ip2 + χArp21 r1 βφr1 Inp,t1 r1 βφr1 et2 Inp,t2 r1 βφr1 Inp,nt + χArnp1 r2 βφr2 ei1 Ip1 + χArp12 r2 βφr2 Ip2 + χArp22 r2 βφr2 et1 Inp,t1 r2 βφr2 Inp,t2 r2 βφr2 Inp,nt + χArnp2 r12 r12 r12 βφr12 Ip1 + Ip2 + Inp 9 (S40) (S41) (S42) (S43) (S44) (S45) (S46) (S47) (S48) (S49) (S50) +χ Arp112 + Arp212 + Arnp12 . (S51) Compared to the single-drug model, we now have twelve contact states Cxy (x ∈ {p1, p2, np}, y ∈ {w, r1 , r2 , r12 }): Θw p1 = Θw p2 = Θw np = Θrp11 = Θrp21 = Θrnp1 = Θrp12 = Θrp22 = Θrnp2 = Θrp112 = Θrp212 = Θrnp12 = w es1 Cp1 S w w w Cp1 + Cp2 + Cnp N w es2 Cp2 S w w w Cp1 + Cp2 + Cnp N w Cnp S w w w Cp1 + Cp2 + Cnp N r1 Cp1 S r1 r1 r1 Cp1 + Cp2 + Cnp N r1 es2 Cp2 S r1 r1 r1 Cp1 + Cp2 + Cnp N r1 Cnp S r1 r1 r1 Cp1 + Cp2 + Cnp N r2 es1 Cp1 S r2 r2 r2 Cp1 + Cp2 + Cnp N r2 Cp2 S r2 r2 r2 Cp1 + Cp2 + Cnp N r2 Cnp S r2 r2 r2 Cp1 + Cp2 + Cnp N r12 Cp1 S r12 r12 r12 Cp1 + Cp2 + Cnp N r12 Cp2 S r12 r12 r12 Cp1 + Cp2 + Cnp N r12 Cnp S r12 r12 r12 Cp1 + Cp2 + Cnp N (S52) (S53) (S54) (S55) (S56) (S57) (S58) (S59) (S60) (S61) (S62) (S63) . The differential equations that describe the dynamics are: dS w w r1 = − λw Θw Θrp11 + Θrp21 + Θrnp1 p1 + Θp2 + Θnp + λ dt +λr2 Θrp12 + Θrp22 + Θrnp2 + λr12 Θrp112 + Θrp212 + Θrnp12 10 (S64) and for the wild-type contact classes w w dCp1 w w w = κωf1 αp1 (1 − ρp1 ) Ep1 + αp2 (1 − ρp2 ) Ep2 dt w w w − λw Θw − δCp1 Enp + [(1 − ρt1 ) f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp p1 (S65) w w dCp2 w w w = κωf2 αp1 (1 − ρp1 ) Ep1 + αp2 (1 − ρp2 ) Ep2 dt w w w − λw Θw − δCp2 Enp + [(1 − ρt1 ) f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp p2 (S66) w w dCnp w w w = κ (1 − ) ω αp1 (1 − ρp1 ) Ep1 + αp2 (1 − ρp2 ) Ep2 dt w w Enp + [(1 − ρt1 ) f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp w w w w w w + κω 1 − αp1 (1 − ρp1 ) Ep1 + 1 − αp2 (1 − ρp2 ) Ep2 + 1 − αnp Enp w − δCnp − λw Θw np (S67) and for the drug 1 resistant contact classes r1 r1 r1 dCp1 r1 r1 r1 r1 + [f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp Enp (1 − ρp2 ) Ep2 Ep1 + αp2 = κωf1 αp1 dt r1 r1 w w w +αp1 ρp1 Ep1 + αnp ρt1 f1 ψEnp − δCp1 − λr1 Θrp11 (S68) r1 r1 r1 dCp2 r1 r1 r1 r1 = κωf2 αp1 Ep1 + αp2 (1 − ρp2 ) Ep2 + [f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp Enp dt r1 r1 w w w +αp1 ρp1 Ep1 + αnp ρt1 f1 ψEnp − δCp2 − λr1 Θrp21 (S69) r1 r1 r1 dCnp r1 r1 r1 r1 = κ (1 − ) ω αp1 Ep1 + αp2 (1 − ρp2 ) Ep2 + [f1 ψ + (1 − ρt2 ) f2 ψ + (1 − ψ)] αnp Enp dt r1 w w w +αp1 ρp1 Ep1 + αnp ρt1 f1 ψEnp r1 r1 r1 r1 r1 r1 + κω 1 − αp1 Ep1 + 1 − αp2 (1 − ρp2 ) Ep2 + 1 − αnp Enp r1 w r1 + 1 − αp1 ρp1 Ep1 − δCnp − λr1 Θrnp1 (S70) and for the drug 2 resistant contact classes r2 r2 r2 dCp1 r2 r2 r2 r2 = κωf1 αp2 Ep2 + αp1 (1 − ρp1 ) Ep1 + [(1 − ρt1 ) f1 ψ + f2 ψ + (1 − ψ)] αnp Enp dt r2 r2 w w w +αp2 ρp2 Ep2 + αnp ρt2 f2 ψEnp − δCp1 − λr2 Θrp12 (S71) r2 r2 r2 dCp2 r2 r2 r2 r2 Enp = κωf2 αp2 Ep2 + αp1 (1 − ρp1 ) Ep1 + [(1 − ρt1 ) f1 ψ + f2 ψ + (1 − ψ)] αnp dt r2 r2 w w w + αnp ρt2 f2 ψEnp − δCp2 − λr2 Θrp22 (S72) +αp2 ρp2 Ep2 r2 r2 r2 dCnp r2 r2 r2 r2 Enp = κ (1 − ) ω αp2 Ep2 + αp1 (1 − ρp1 ) Ep1 + [(1 − ρt1 ) f1 ψ + f2 ψ + (1 − ψ)] αnp dt r2 w w w + αnp ρt2 f2 ψEnp +αp2 ρp2 Ep2 r2 r2 r2 r2 r2 r2 + κω 1 − αp2 Ep2 + 1 − αp1 (1 − ρp1 ) Ep1 + 1 − αnp Enp r2 w r2 r2 r2 + 1 − αp2 ρp2 Ep2 − δCnp − λ Θnp (S73) 11 and for the multi-drug resistant contact classes r12 dCp1 r2 r1 r12 r12 r12 + αr12 ρp1 Ep1 + αr12 ρp2 Ep2 + αr12 Enp + αr12 Ep2 = κωf1 αr12 Ep1 dt r12 r2 r2 r1 r1 − λr12 Θrp112 − δCp1 ρt1 f1 ψEnp + αnp ρt2 f2 ψEnp +αnp r12 dCp2 r2 r1 r12 r12 r12 + αr12 ρp1 Ep1 + αr12 ρp2 Ep2 + αr12 Enp + αr12 Ep2 = κωf2 αr12 Ep1 dt r12 r2 r2 r1 r1 − λr12 Θrp212 − δCp2 ρt1 f1 ψEnp + αnp ρt2 f2 ψEnp +αnp r12 dCnp r2 r1 r12 r12 r12 + αr12 ρp1 Ep1 + αr12 ρp2 Ep2 + αr12 Enp + αr12 Ep2 = κ (1 − ) ω αr12 Ep1 dt r2 r2 r1 r1 ρt1 f1 ψEnp + αnp ρt2 f2 ψEnp +αnp r12 r12 r12 + (1 − αr12 ) Enp + (1 − αr12 ) Ep2 + κω (1 − αr12 ) Ep1 r2 r1 r12 − λr12 Θrnp12 − δCnp + (1 − αr12 ) ρp1 Ep1 + (1 − αr12 ) ρp2 Ep2 (S74) (S75) (S76) and, for x ∈ {p1, p2, np}, y ∈ {w, r1 , r2 , r12 }, dExy = λy Θyx − ωExy dt (S77) 12 and, for symptomatic infectious states w dIp1 dt w dIp2 dt w dInp,t1 dt w dInp,t2 dt w dInp,nt dt r1 dIp1 dt r1 dIp2 dt r1 dInp,t1 dt r1 dInp,t2 dt r1 dInp,nt dt r2 dIp1 dt r2 dIp2 dt r2 dInp,t1 dt r2 dInp,t2 dt r2 dInp,nt dt r12 dIp1 dt r12 dIp2 dt r12 dInp dt w w w = αp1 (1 − ρp1 ) ωEp1 − γI Ip1 (S78) w w w − γI Ip2 (1 − ρp2 ) ωEp2 = αp2 (S79) w w w = αnp (1 − ρt1 ) f1 ψωEnp − γI Inp,t1 (S80) w w w = αnp (1 − ρt2 ) f2 ψωEnp − γI Inp,t2 (S81) w w w − γI Inp,nt (1 − ψ) ωEnp = αnp (S82) r1 r1 r1 r1 w − γI Ip1 ωEp1 ρp1 ωEp1 + αp1 = αp1 (S83) r1 r1 r1 − γI Ip2 (1 − ρp2 ) ωEp2 = αp2 (S84) r1 r1 w w r1 − γI Inp,t1 f1 ψωEnp = αnp ρt1 f1 ψωEnp + αnp (S85) r1 r1 r1 = αnp (1 − ρt2 ) f2 ψωEnp − γI Inp,t2 (S86) r1 r1 r1 = αnp (1 − ψ) ωEnp − γI Inp,nt (S87) r2 r2 r2 = αp1 (1 − ρp1 ) ωEp1 − γI Ip1 (S88) r2 r2 r2 r2 w = αp2 ρp2 ωEp2 + αp2 ωEp2 − γI Ip2 (S89) r2 r2 r2 = αnp (1 − ρt1 ) f1 ψωEnp − γI Inp,t1 (S90) r2 w w r2 r2 = αnp ρt2 f2 ψωEnp + αnp f2 ψωEnp − γI Inp,t2 (S91) r2 r2 r2 = αnp (1 − ψ) ωEnp − γI Inp,nt (S92) r2 r12 r12 = αr12 ρp1 ωEp1 + αr12 ωEp1 − γI Ip1 (S93) r1 r12 r12 = αr12 ρp2 ωEp2 + αr12 ωEp2 − γI Ip2 (S94) r1 r1 r2 r2 r12 r12 = αnp ρt2 f2 ψωEnp + αnp ρt1 f1 ψωEnp + αr12 ωEnp − γI Inp (S95) 13 and, for asymptomatic infectious states dAw p1 dt dAw p2 dt dAw np dt dArp11 dt dArp21 dt dArnp1 dt dArp12 dt dArp22 dt dArnp2 dt dArp112 dt dArp212 dt dArnp12 dt w w = 1 − αp1 (1 − ρp1 ) ωEp1 − γA Aw p1 (S96) w w − γA Aw (1 − ρp2 ) ωEp2 = 1 − αp2 p2 (S97) w w = 1 − αnp ωEnp − γA Aw np (S98) r1 r1 r1 w − γA Arp11 ωEp1 + 1 − αp1 ρp1 ωEp1 = 1 − αp1 (S99) r1 r1 − γA Arp21 (1 − ρp2 ) ωEp2 = 1 − αp2 (S100) r1 r1 − γA Arnp1 ωEnp = 1 − αnp (S101) r2 r2 − γA Arp12 (1 − ρp1 ) ωEp1 = 1 − αp1 (S102) r2 r2 r2 w − γA Arp22 ωEp2 ρp2 ωEp2 + 1 − αp2 = 1 − αp2 (S103) r2 r2 = 1 − αnp ωEnp − γA Arnp2 (S104) r2 r12 = (1 − αr12 ) ρp1 ωEp1 + (1 − αr12 ) ωEp1 − γA Arp112 (S105) r1 r12 = (1 − αr12 ) ρp2 ωEp2 + (1 − αr12 ) ωEp2 − γA Arp212 (S106) r12 = (1 − αr12 ) ωEnp − γA Arnp12 (S107) and, for x ∈ {p1, p2, np}, y ∈ {w, r1 , r2 , r12 }, y dRIx = γI Ixy dt y dRAx = γA Ayx dt (S108) (S109) and finally, for the depletion of the finite stockpiles of AV drugs, w w dOtotal r1 r1 r1 r1 w w w w r1 r1 Enp + αnp Enp + αp1 Ep1 + αp2 Ep2 + αnp = −κω αp1 Ep1 + αp2 Ep2 dt r2 r2 r2 r2 r12 r12 r12 r2 r2 +αp1 Ep1 + αp2 + Ep2 + Enp Ep2 + αnp Enp + αr12 Ep1 w w r1 r1 r2 r2 r12 Enp + αr12 Enp Enp + αnp − ψω αnp Enp + αnp (S110) with dO1 dOtotal = f1 dt dt dO2 dOtotal = f2 dt dt (S111) (S112) 14 R0 is the maximum eigenvalue of a 30 × 30 matrix. As in the single-drug model, each of the four non-zero eigenvalues corresponds to the reproduction number for one of the four strains in circulation: w w w αp1 + 1 − αp1 χ (1 − ρp1) es1 ei1 Kp1 w w w χ (1 − ρp2 ) es2 ei2 Kp2 + 1 − αp2 + αp2 w [et1 f1 (1 − ρt1) ψ+ et2 f2 (1 − ρt2 ) ψ + αnp + (1 − ψ)] w w w + 1 − α χ 1 − K − K p1 p2 , r1np r r1 r1 1 φ αp1 + 1 − αp1 χ Kp1 r1 r1 r1 χ (1 − ρp2 ) es2 ei2 Kp2 + 1 − αp2 + αp2 β r1 [f1 ψ + et2 f2 (1 −ρt2 ) ψ + (1 − ψ)] + αnp (S113) R0 = × max γ r1 r1 r1 + 1− αnp χ 1 − Kp1 − Kp2 , r2 r2 r2 r2 ρp1 ) es1 ei1 Kp1 φ αp1 + 1 − αp1 χ (1 − r2 r2 r2 χ Kp2 + 1 − αp2 + αp2 r2 [et1 f1 (1 − ρt1) ψ+ f2 ψ + (1 − ψ)] + αnp r2 r2 r2 , − Kp2 + 1 − αnp χ 1 − Kp1 r12 r12 φ {α + (1 − αr12 ) χ} S1.2.2 Treatment and Prophylaxis model We have four strains in circulation:wild-type virus (w label), treatment-resistant virus (rt label), prophylaxis-resistant virus (rp label) and multi-resistant virus (rtp label). We introduce new parameters: • φrt ,rp ,rtp — the transmissibility of the (treatment, prophylaxis, multiple)-resistant strain relative to the transmissibility of the uncontrolled wild-type strain. • ρt — the proportion of offspring (that is, secondary infectives) of treated wild-type infectives who carry the resistant strain. • ρp — the proportion of offspring of breakthrough (prophylaxis) wild-type infectives who carry the resistant strain. We assume that all offspring of rt -resistant infectives are either rt -resistant or rtp -resistant. Similarly, all offspring of rp -resistant infectives are either rp -resistant or rtp -resistant. All offspring of rtp -resistant infectives are rtp -resistant. The provision of AV drugs as prophylaxis to contacts of treatment-resistant infectives is assumed to have the same protective effect as provision of prophylaxis to contacts of wild-type infectives. Treatment has no effect on infectives carrying the treatment-resistant strain. Similarly, the provision of AV drugs as treatment to prophylaxis-resistant infectives is assumed to have the same effect as provision of treatment to wild-type infectives. Prophylaxis of contacts of prophylaxisresistant infectives has no protective effect. Provision of AV drugs as prophylaxis to contacts or as treatment to infectives carrying the multiple-resistant strain is assumed to have no effect on either infectiousness or susceptibility. 15 The force of infections arises from 18 infectors: w w λw p = βei Ip + χAp (S114) w λw np,t = βet Inp,t (S115) w w λw np,nt = β Inp,nt + χAnp λrpp rp λnp,t rp λnp,nt λrpt λrnpt rtp λ = = = = = = βφ Iprp + χArpp rp βφrp et Inp,t rp + χArnpp βφrp Inp,nt βφrt ei Iprt + χArpt rt + χArnpt βφrt Inp rtp +χ βφrtp Iprtp + Inp rp (S116) (S117) (S118) (S119) (S120) (S121) Arptp + Arnptp . (S122) We have eight contact states: Cxy (x ∈ {p, np}, y ∈ {w, rt , rp , rtp }): es Cpw S w N Cpw + Cnp w Cnp S = w w N Cp + Cnp Θw p = (S123) Θw np (S124) r Cp p S rp rp Cp + Cnp N r S Cnpp Θrnpp = rp rp Cp + Cnp N es Cprt S Θrpt = rt rt N Cp + Cnp rt Cnp S Θrnpt = rt r t Cp + Cnp N Θrpp = (S125) (S126) (S127) (S128) r Θrptp Θrnptp Cp tp S = rtp rtp Cp + Cnp N r Cnptp S = rtp rtp Cp + Cnp N (S129) (S130) . The differential equations that describe the dynamics are: dS w rt Θrpt + Θrnpt = − λw Θw p + Θnp + λ dt +λrp Θrpp + Θrnpp + λrtp Θrptp + Θrnptp (S131) and for the wild-type contact classes dCpw w w Enp − δCpw − λw Θw = κω αpw (1 − ρp ) Epw + [(1 − ρt ) ψ + (1 − ψ)] αnp p dt w dCnp w w = κ (1 − ) ω αpw (1 − ρp ) Epw + [(1 − ρt ) ψ + (1 − ψ)] αnp Enp dt w w w + κω 1 − αpw (1 − ρp ) Epw + 1 − αnp Enp − δCnp − λw Θw np 16 (S132) (S133) and for the prophylaxis-strain resistant contact classes r dCp p rp + αrp ρp Epw − δCprp − λrp Θrpp (S134) = κω αrp Eprp + [(1 − ρt ) ψ + (1 − ψ)] αrp Enp dt r dCnpp rp + αrp ρp Epw = κ (1 − ) ω αrp Eprp + [(1 − ρt ) ψ + (1 − ψ)] αrp Enp dt rp + (1 − αrp ) ρp Epw + κω (1 − αrp ) Eprp + (1 − αrp ) Enp rp − λrp Θrnpp − δCnp (S135) and for the treatment-strain resistant contact classes dCprt w w rt rt + αnp ρt ψEnp − δCprt − λrt Θrpt Enp = κω αprt (1 − ρp ) Eprt + αnp dt rt dCnp w w rt rt + αnp ρt ψEnp Enp = κ (1 − ) ω αprt (1 − ρp ) Eprt + αnp dt rt rt rt − λrt Θrnpt Enp − δCnp + κω 1 − αprt (1 − ρp ) Eprt + 1 − αnp (S136) (S137) and for the multi-drug resistant contact classes r dCp tp rtp rp = κω αrtp Eprtp + Enp + αrtp ρp Eprt + αrp ρt ψEnp − δCprtp − λrtp Θrptp dt r dCnptp rtp rp = κ (1 − ) ω αrtp Eprtp + Enp + αrtp ρp Eprt + αrp ρt ψEnp dt rtp + κω (1 − αrtp ) Eprtp + Enp + (1 − αrtp ) ρp Eprt rtp − δCnp − λrtp Θrnptp (S138) (S139) and, for x ∈ {p, np}, y ∈ {w, rp , rt , rtp }, dExy = λy Θyx − ωExy dt (S140) 17 and, for symptomatic infectious states dIpw dt w dInp,t dt w dInp,nt dt r dIp p dt rp dInp,t dt rp dInp,nt dt dIprt dt rt dInp dt r dIp tp dt r dInptp dt = αpw (1 − ρp ) ωEpw − γI Ipw (S141) w w w = αnp (1 − ρt ) ψωEnp − γI Inp,t (S142) w w w − γI Inp,nt (1 − ψ) ωEnp = αnp (S143) = αrp ρp ωEpw + αrp ωEprp − γI Iprp (S144) r p rp − γI Inp,t = αrp (1 − ρt ) ψωEnp (S145) r p rp − γI Inp,nt = αrp (1 − ψ) ωEnp (S146) = αprt (1 − ρp ) ωEprt − γI Iprt (S147) rt rt rt w w − γI Inp ωEnp + αnp ρt ψωEnp = αnp (S148) = αrtp ρp ωEprt + αrtp ωEprtp − γI Iprtp (S149) rp rtp rtp = αrp ρt ψωEnp + αrtp ωEnp − γI Inp (S150) and, for asymptomatic infectious states dAw p dt dAw np dt r dApp dt r dAnpp dt dArpt dt dArnpt dt r dAptp dt r dAnptp dt = 1 − αpw (1 − ρp ) ωEpw − γA Aw p (S151) w w = 1 − αnp ωEnp − γA Aw np (S152) = (1 − αrp ) ρp ωEpw + (1 − αrp ) ωEprp − γA Arpp (S153) rp = (1 − αrp ) ωEnp − γA Arnpp (S154) = 1 − αprt (1 − ρp ) ωEprt − γA Arpt (S155) rt rt = 1 − αnp ωEnp − γA Arnpt (S156) = (1 − αrtp ) ρp ωEprt + (1 − αrtp ) ωEprtp − γA Arptp (S157) rtp = (1 − αrtp ) ωEnp − γA Arnptp (S158) and, for x ∈ {p, np}, y ∈ {w, rp , rt , rtp } y dRIx = γI Ixy dt y dRAx = γA Ayx dt (S159) (S160) 18 and finally, for the depletion of the finite stockpiles of AV drugs, dOp rp rt rt w w + αrp Eprp + Enp Enp = −κω αpw Epw + αnp Enp + αprt Eprt + αnp dt rtp +αrtp Eprtp + Enp w w dOt rtp rp rt rt . + αrtp Enp + αrp Enp Enp = −ψω αnp Enp + αnp dt (S161) (S162) When the stockpile of AV drugs for prophylaxis, Op , or treatment, Ot , runs out that form of intervention is no longer possible. Within the simulations, we set or ψ to zero as appropriate from that point onwards. R0 is, again, the maximum of four eigenvalues (one for each of the strains): w w χ (1 − ρp ) es ei K w + 1 − α α p p w w + αnp [et (1 − ρt ) ψ + (1 − ψ)] + 1 − αnp χ (1 − K w ) , φrp {(αrp + (1 − αrp ) χ) K rp β + (αrp [et (1 − ρt ) ψ + (1 − ψ)] + (1 − αrp ) χ) (1 − K rp )} , R0 = × max γ φrt αprt + 1 − αprt χ (1 − ρp) es ei K rt rt rt + αnp + 1 − αnp χ (1 − K rt ) , rtp rtp rtp φ {α + (1 − α ) χ} (S163) S2 Results We consider a number of different scenarios to demonstrate the general nature of the results presented in the main text. We also provide a sensitivity analysis for the single-drug, random allocation and treatment and prophylaxis models. S2.1 Alternative scenarios In this section we examine two plausible alternative scenarios where it would be expected that a successful intervention is possible: 1. The resistant strain has a higher relative fitness than φ = 0.8, but a lower seeding rate. We examine a 90% fit resistant strain (φ = 0.9) with a seeding rate of 10 or 100 times lower (ρt = 10−2 or ρt = 10−3 ). We keep ρp = ρt /10. 2. The symptomatic proportion is somewhat lower. With a fixed clinical attack rate of 40% this implies a higher R0 . We examine a scenario with α = 0.6 and an increased (but still realistic) intervention of providing prophylaxis to 40% of contacts (up from 30% in the main text) and treatment to 50% of symptomatic cases (up from 40% in the main text). S2.1.1 Extremely high fitness and lower seeding w We keep the symptomatic proportion unchanged at αnp = 0.7, and the intervention unchanged at = 0.3, ψ = 0.4. We restrict ourselves to a 90–10 stockpile. Figures S3– S5 are the equivalent of Figures 5–7 in the main text. While each strategy is less capable of controlling the epidemic compared to the main text, the treatment and prophylaxis strategy remains the most effective choice. In fact, especially in the case of lower seeding, it is more clear cut that treatment and prophylaxis is 19 a better strategy compared to either single-drug usage or a random allocation strategy. The reason is clear: with higher fitness (φ = 0.9) it becomes even more important to delay emergence of the multi-drug resistant strain. 5 5 x 10 7 Number of symptomatic infections Number of symptomatic infections 7 6 5 4 3 2 1 0 0 0.5 1 Time (years) 1.5 x 10 6 5 4 3 2 1 0 0 2 0.5 (a) 1 Time (years) 1.5 2 (b) Figure S3: a. ρt = 0.01 (one order of magnitude less than usual) b. ρt = 0.001 (two orders of magnitude less than usual). 6 x 10 Cumulative number of symptomatic infections Cumulative number of symptomatic infections 6 8 7 6 5 4 3 2 1 0 0 0.5 1 Time (years) 1.5 2 (a) 8 x 10 7 6 5 4 3 2 1 0 0 0.5 1 Time (years) 1.5 2 (b) Figure S4: a. ρt = 0.01 (one order of magnitude less than usual) b. ρt = 0.001 (two orders of magnitude less than usual). 20 1 0.8 0.8 0.6 0.6 Proportion Proportion 1 0.4 0.2 0.4 0.2 0 0 0.5 1 Time (years) 1.5 0 0 2 0.5 1 Time (years) (a) 1.5 2 (b) Figure S5: a. ρt = 0.01 (one order of magnitude less than usual) b. ρt = 0.001 (two orders of magnitude less than usual). S2.1.2 A reduced symptomatic proportion Consider a scenario where α = 0.6 (R0 = 1.x). Without an increase in the intervention the impact of treatment and/or prophylaxis is minimal (see Figure 2b in the main text). Here, we examine the ability of an increased intervention to delay the onset of the epidemic. Because the baseline epidemic duration is shorter, an increased intervention can not produce delays to median infection as great as for α = 0.7. However, a similar multiplicative increase in the time to median infection can be achieved and the different strategies (single-drug, random allocation, treatment and prophylaxis) have the same qualitative impacts. Figure S6 shows the epidemic curves, cumulative curves and cumulative resistant proportion for a 90–10 stockpile scenario. 5 6 8 6 4 2 0 0 0.5 1 Time (years) 1.5 2 8 x 10 1 7 0.8 6 5 Proportion x 10 Cumulative number of symptomatic infections Number of symptomatic infections 10 4 3 0.6 0.4 2 0.2 1 0 0 (a) 0.5 1 Time (years) (b) 1.5 2 0 0 0.5 1 Time (years) 1.5 2 (c) w Figure S6: αnp = 0.6, = 0.4, ψ = 0.5. a. Epidemic curves. b. Cumulative curves. c Cumulative resistance proportion. We explore this scenario (α = 0.6, = 0.4, ψ = 0.5) a little more below when performing a sensitivity analysis for multi-drug strategies. S2.2 Sensitivity Analysis Throughout the main text we assumed that: 21 1. antiviral drugs had a fixed efficacy. For treatment, we set et = 0.7 (relative infectiousness). For prophylaxis, we set es = 0.5 (relative susceptibility) and ei = 0.4 (relative infectiousness if nevertheless infected). 2. resistant strain seeding was either “high” (ρt = 10−1 , ρp = 10−2 ) or “low” (ρt = 10−3 , ρp = 10−4 ). 3. relative transmissibility of asymptomatic infections was 50% (χ = 0.5). Here, we examine sensitivity to these parameter choices. We also compare conclusions regarding optimal strategy across these same parameter sensitivity analyses. Throughout, we restrict ourselves to a high-fitness (φ = 0.8) resistant strain scenario. In the multi-drug strategy section we further restrict the analysis to high seeding only (ρt = 10−1 , ρp = 10−2 ). w We perform this analysis with the symptomatic proportion fixed as in the main text (αnp = 0.7). The intervention also remains as in the main text ( = 0.3, ψ = 0.4). S2.2.1 Single drug model 1 1.6 Time of median infection (years) Cumulative proportion resistant at expiry of stockpile With a single drug for treatment and prophylaxis, it is implausible that et and ei vary independently. Thus, we tie et to ei : as ei varies from 0.4 to 1, et varies from 0.7 to 1. Figure S7 shows the singledrug model’s sensitivity to variation in antiviral drug efficacy. 0.8 0.6 0.4 0.2 0 0.4 0.5 0.6 0.7 ei 0.8 0.9 1.4 1.2 1 0.8 0.6 0.4 0.2 0.4 1 (a) 0.5 0.6 0.7 ei 0.8 0.9 1 (b) Figure S7: Impact of simultaneously varying ei ∈ [0.4, 1], et ∈ [0.7, 1] and es ∈ [0.5, 1], for high fitness (φ = 0.8, solid line) and low fitness (φ = 0.3, dashed line). The seeding rate is kept fixed at ρt = 10−1 , ρp = 10−2 . a. The unfit resistant strain (dashed line) is unable to establish itself in the population. For the fit resistant strain (solid line) the proportion of resistant infections at stockpile expiry increases as ability to reduce transmission increases (ei , et and es getting smaller). b. The unfit resistant strain (dashed line) always leads to a longer time to median infection than the fit resistant strain (solid line). For the unfit strain, improving AV transmission reduction (ei getting smaller) increases the time to median infection. For the fit resistant strain, as the AV intervention becomes effective enough to lead to a resistant-strain dominated epidemic we find the time to median infection flattens out. The properties of the AV intervention have little influence on an epidemic dominated by resistant virus. 22 1 1.4 Time of median infection (years) Cumulative proportion resistant at expiry of stockpile Figure S8 shows the single-drug model’s sensitivity to variation in the seeding rate of the resistant strain. We always keep ρp = ρt /10. 0.8 0.6 0.4 0.2 0 −4 10 −3 10 −2 ρt 10 1.3 1.2 1.1 1 0.9 0.8 0.7 −4 10 −1 10 (a) −3 10 −2 ρt 10 −1 10 (b) Figure S8: Impact of varying ρt and ρp (logscale) for φ above the threshold (solid line) and φ below the threshold (dashed line). a. Above the threshold, increasing the seeding rate increases the proportion resistant. Below the threshold, the proportion resistant is essentially independent of ρt and ρp . b. Time to median infection decreases as seeding rate increases above the threshold and increases above the threshold (the “immunising” effect). Figure S9 shows the single-drug model’s sensitivity to variaiton in the assumed relative transmissibility of asymptomatic infections. 23 2 Time of median infection (years) Cumulative proportion resistant at expiry of stockpile 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 χ 0.6 0.8 1 1.8 1.6 1.4 1.2 1 0.8 0 (a) 0.2 0.4 χ 0.6 0.8 1 (b) Figure S9: Impact of varying χ. Colour is seeding rate (ρt = 0.1, ρp = 0.01 (blue), ρt = 0.01, ρp = 0.001 (red), ρt = 0.001, ρp = 0.0001 (green)). Solid lines are high fitness (φ = 0.8), dashed lines are low fitness (φ = 0.3). a. For low fitness strains there is no ability to generate significant proportions of resistance. For high fitness strains, and for high seeding (blue) we have a resistantstrain dominated epidemic. Therefore, relative transmissibility of asymptomatics is not important. For lower seeding (red and green), the epidemic is a mixture of wild-type and resistant-type strains and thus, as χ increases and the wild-type is more able to continue transmitting, the proportion resistant is reduced. b. For transmissible resistant strains (solid lines) we generally have significant proportions resistant so the time to median infection is fairly independent of χ. For untransmissible resistant strains (dotted lines) the time to median infection is reduced as asymptomatics are more capable of transmitting. S2.2.2 Random allocation model In a random allocation strategy, both drugs 1 and 2 are used for treatment and prophylaxis. Therefore, for each drug we must tie ei , et and es as in the single drug strategy. However, we can vary the efficacy of the two drugs. For a fixed fitness and seeding (φ = 0.8, ρt = 10−1 , ρp = 10−2 ), we vary ei1 and ei2 independently. et1 and es1 are locked to ei1 and et2 and es2 are locked to ei2 as in the single drug strategy sensitivity analysis. Figure S10 shows the random allocation model’s sensitivity to variation in antiviral drug efficacy for a 90–10 stockpile split. Figure S11 shows the result for a 50–50 stockpile split. For the 90–10 split, we see, unsurprisingly, little sensitivity to the properties of drug 2. For the 50–50 split the system is symmetric in drug 1 and drug 2. 24 0.8 0.7 0.5 0.6 0.5 0 0.4 0.4 0.6 Time to median infection (years) Cumulative proporiton resistant at expiry 0.9 1 0.8 1 0.7 0.65 0.5 0.6 0.55 0 0.4 0.5 0.4 0.8 1 0.8 ei1 1 0.4 0.8 0.2 0.6 0.45 0.6 0.3 ei2 0.75 ei2 0.6 1 (a) 0.35 0.8 ei1 1 0.4 (b) 0.9 1 0.8 0.7 0.5 0.6 0.5 0 0.4 0.4 0.6 0.3 0.4 0.8 ei2 0.6 1 0.2 0.8 ei1 1 Time to median infection (years) Cumulative proporiton resistant at expiry Figure S10: Random allocation sensitivity to ei1 and ei2 . et1 and et2 vary in the interval [0.7, 1] and es1 and es2 vary in the interval [0.5, 1] as ei1 and ei2 vary in the interval [0.4, 1]. The stockpile split is 90–10. a. Cumulative proportion resistant at expiry of stockpile. b. Time to median infection. 1 0.8 0.7 0.5 0.6 0 0.4 0.5 0.6 ei2 (a) 0.4 0.8 0.4 0.6 1 0.8 ei1 1 (b) Figure S11: Details as in Figure S11 but for a 50–50 stockpile split. a. Cumulative proportion resistant at expiry of stockpile. b. Time to median infection. Figures S12 and S13 show the random allocation model’s sensitivity to variation in the assumed relative transmissibility of asymptomatic infections with a 90–10 and 50–50 stockpile split w respectively. We show two scenarios: as in the main text (αnp = 0.7, = 0.3, ψ = 0.4, blue) and w the alternative scenario presented above in Section S2.1.2 (αnp = 0.6, = 0.4, ψ = 0.5, red). For the 90-10 stockpile split, most resistance (that is, more than half) is single-drug resistance. The results are largely insensitive to χ While the proportion resistant at stockpile expiry is similar for the α = 0.6 scenario (compared to the α = 0.7 scenario), the time to median infection is much shorter. This reflects the naturally faster dynamics due to the higher R0 . For a 50–50 stockpile, fewer of the infections are resistant in total compared to in the 90–10 case, but of those that are, multi-strain resistance is dominant. 25 0.9 Time of median infection (years) Cumulative proporiton resistant at expiry 1 0.8 0.6 0.4 0.2 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0 0 0.2 0.4 χ 0.6 0.8 0.45 0 1 0.2 0.4 (a) χ 0.6 0.8 1 (b) w = 0.7, = 0.3, ψ = 0.4). The alternative Figure S12: The main text scenario is in blue (αnp w scenario is in red (αnp = 0.6, = 0.4, ψ = 0.5). The stockpile split is 90–10. a. Solid lines are total proportion resistant. Dashed lines are the proportion of all infections that are multi-drug resistant. b. Solid lines are the time of median infection. 0.95 0.9 Time of median infection (years) Cumulative proporiton resistant at expiry 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.2 0.4 χ 0.6 0.8 0.5 0 1 (a) 0.2 0.4 χ 0.6 0.8 1 (b) Figure S13: Details as in Figure S12 but for a 50–50 stockpile. S2.2.3 Treatment and Prophylaxis model In a treatment and prophylaxis strategy we have one drug used solely for treatment and the other solely for prophylaxis. It follows that we examine sensitivity to antiviral drug efficacy in the (ei , et )-plane. We tie es to ei as in the single-drug sensitivity analysis. Figure S14 shows the proportion resistant at stockpile expiry and the time of median infection as a function of ei and et . 26 1 0.7 0.6 0.5 0.5 0 0.7 0.4 0.3 0.8 0.4 0.9 1 1 1.5 0.9 1 0.8 0.5 0.7 0 0.7 0.6 0.4 0.9 0.8 ei 1 0.5 0.8 0.2 0.6 et Time of median infection (years) Cumulative proporiton resistant at expiry 0.8 0.4 0.6 1 et 0.8 ei 1 (a) (b) Figure S14: Treatment and prophylaxis drugs strategy’s sensitivity to ei and et . The susceptibility factor is fixed at es = 0.5. a. Cumulative proportion resistant at expiry of stockpile. b. Time to median infection. Figure S15 shows the variation in output as a function of relative transmissibility of asymptomatic infections, for both the main text scenario (α = 0.7, blue) and the alternative scenario considered earlier in this document (α = 0.6, red). 1.1 Time of median infection (years) Cumulative proporiton resistant at expiry 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 χ 0.6 0.8 1 0.9 0.8 0.7 0.6 0.5 0.4 0 1 (a) 0.2 0.4 χ 0.6 0.8 1 (b) Figure S15: Details as in Figure S12 but for the treatment and prophylaxis strategy. S2.2.4 Comparing models We have explored the sensitivity of each model to key parameter assignments. Here, as in the main text, we make a comparison between models. A comparison of Figures S12 and S15 demonstrates that across the range of χ values considered, the treatment and prophylaxis strategy provides better outcomes, in terms of both proportion of infections resistant and time of median infection, than does the random allocation strategy. The single-drug strategy result (Figure S9, solid blue line) is inferior to both multi-drug strategies. 27 Time of median infection (years) Cumulative proporiton resistant at expiry To make a comparison in terms of sensitivity to antiviral drug effectiveness is more difficult. If there is a large asymmetry in the effectiveness of the two drugs, the treatment and prophylaxis strategy can yield a poorer result compared to the random allocation strategy. Consider a situation where the 10% stockpile (drug 2) turns out to be ineffective (et → 1, ei2 → 1, et2 → 1). For the random allocation strategy, this is of little consequence. The 90% stockpile (drug 1) is used for both treatment and prophylaxis and the result is essentially that given by a single-drug strategy. For the treatment and prophylaxis strategy however, we essentially have a prophylaxis only single-drug strategy. Our previous work (McCaw and McVernon, 2007) has shown that a “synergistic” effect is observed when effective treatment (low et ) is introduced in a population receiving prophylaxis. Thereby, for efficacious drug 1 (low ei , ei1 and et1 ) and poor drug 2 (high et , ei2 and et2 ) in Figure S16b we find that a random allocation strategy provides a longer time to median infection than does a treatment and prophylaxis strategy. 1 0.5 0 Increasing drug 1 effectiveness 1.5 1 0.5 0 Increasing drug 2 effectiveness (a) Increasing drug 1 effectiveness Increasing drug 2 effectiveness (b) Figure S16: For a 90–10 stockpile split, we compare the random allocation (blue) and treatment and prophylaxis (red) models. The two surfaces are those already presented in Figures S10 and S14. For the blue surface, ei1 and et1 vary on the drug 1 axis, and ei2 and et2 on the drug 2 axis. For the red surface, ei varies on the drug 1 axis and et varies on the drug 2 axis. The impact on susceptibility of each drug is kept fixed throughout at es = 0.5 for both strategies. If we also tie es to ei (for drug 1 in the treatment and prophylaxis model, and for both drugs in the random allocation model) we find a qualitatively similar result. a. Cumulative proportion resistant at stockpile expiry. The random allocation surface lies above the treatment and prophylaxis surface for most parameter values. b. Time of median infection. For the most part, the treatment and prophylaxis strategy provides a longer time to median infection. Only when drug 2 (the 10% drug) is ineffective and drug 1 is effective does the random allocation model provide a longer time to median infection. A Multi-drug model construction This technical appendix provides the diagrams and R0 calculations for the multi-drug models. A.1 Random allocation model The possible flows are shown in the following figures. 28 S w es1 Kp1 w αp1 (1 − ρp1 ) w Ep1 w Ip1 w (1 − αp1 ) Aw p1 ρp1 r1 αp1 r1 Ip1 w es2 Kp2 r1 ) (1 − αp1 Arp11 w αp2 (1 − ρp2 ) w Ep2 w Ip2 w (1 − αp2 ) Aw p2 ρp2 w w (1 − Kp1 − Kp2 ) r2 αp2 r2 Ip2 r2 (1 − αp2 ) Arp22 See next figure Figure S17: Tree diagram for wild strain exposures (prophylaxis part) 29 From above figure (S) w w (1 − Kp1 − Kp2 ) w Enp w αnp (1 − ρt1 ) f1 ψ w Inp,t1 ρt1 r1 Inp,t1 f2 ψ (1 − ρt2 ) w Inp,t2 ρt2 w ) (1 − αnp r2 Inp,t2 (1 − ψ) w Inp,nt Aw np Figure S18: Tree diagram for wild strain exposures (treatment part) 30 S r1 Kp1 r1 αp1 r1 Ep1 r1 Ip1 r1 ) (1 − αp1 Arp11 r1 es2 Kp2 r1 αp2 (1 − ρp2 ) r1 Ep2 r1 Ip2 r1 (1 − αp2 ) Arp21 ρp2 αr12 (1 − r1 Kp1 − r12 Ip2 r1 Kp2 ) (1 − αr12 ) See next figure Arp212 Figure S19: Tree diagram for drug 1-resistant strain exposures (prophylaxis part) 31 From above figure (S) r1 r1 (1 − Kp1 ) − Kp2 r1 Enp r1 αnp f1 ψ r1 Inp,t1 f2 ψ (1 − ρt2 ) r1 Inp,t2 ρt2 r1 (1 − αnp ) r12 Inp (1 − ψ) r1 Inp,nt Arnp1 Figure S20: Tree diagram for drug 1-resistant strain exposures (treatment part) 32 S r2 es1 Kp1 r2 Ep1 r2 αp1 (1 − ρp1 ) r2 Ip1 r2 ) (1 − αp1 Arp12 ρp1 αr12 r12 Ip1 r2 Kp2 (1 − αr12 ) Arp112 r2 αp2 r2 Ep2 r2 Ip2 r2 (1 − αp2 ) r2 r2 (1 − Kp1 − Kp2 ) Arp22 See next figure Figure S21: Tree diagram for drug 2-resistant strain exposures (prophylaxis part) 33 From above figure (S) r2 r2 (1 − Kp1 ) − Kp2 r2 Enp r2 αnp (1 − ρt1 ) f1 ψ r2 Inp,t1 ρt1 r12 Inp f2 ψ r2 Inp,t2 (1 − ψ) r2 (1 − αnp ) r2 Inp,nt Arnp2 Figure S22: Tree diagram for drug 2-resistant strain exposures (treatment part) 34 S r12 Kp1 αr12 r12 Ep1 r12 Ip1 (1 − αr12 ) r12 Kp2 Arp112 αr12 r12 Ep2 r12 Ip2 (1 − αr12 ) (1 − r12 Kp1 − Arp212 r12 Kp2 ) αr12 r12 Enp r12 Inp (1 − αr12 ) Arnp12 Figure S23: Tree diagram for multi-resistant strain exposures 35 We have four force-of-infection row vectors (1 × 30): ei1 0 0 0 ei2 0 0 0 et1 0 0 0 0 0 0 et2 1 0 0 0 0 1 0 0 ei2 0 0 0 0 1 0 0 0 et2 0 0 0 0 0 1 0 0 ei1 0 0 0 1 0 0 0 0 et1 0 0 1 0 0 0 0 ~r1 0 r1 0 ~r2 0 r2 1 r12 0 r w ~ ~ 12 λ =β , λ = βφ , λ = βφ , λ = βφ 0 0 1 0 0 0 0 1 0 0 0 1 ei1 χ 0 0 0 ei2 χ 0 0 0 χ 0 0 0 0 χ 0 0 0 ei2 χ 0 0 0 χ 0 0 0 0 ei1 χ 0 0 0 χ 0 0 χ 0 0 0 0 0 χ 0 0 0 χ 0 0 0 χ 36 (S164) We construct column vectors F~w , F~r1 , F~r2 and F~r12 as follows: w w (1 − ρp1 ) es1 Kp1 αp1 0 w w αp2 (1 − ρp2 ) es2 Kp2 0 αw (1 − ρt1 ) f1 ψ 1 − K w − K w 0 p1 p2 np αw (1 − ρ ) f ψ 1 − K w − K w 0 t2 2 np p1 p2 αw (1 − ψ) 1 − K w − K w 0 p2 p1 np r r r1 w αp11 Kp11 ρp1 es1 Kp1 αp1 r1 r1 (1 − ρ ) e K α 0 p2 s2 p2 p2 r1 r1 αw ρ f ψ 1 − K w − K w r1 − K f ψ 1 − K α p2 p1 np 1 p2 p1 np t1 1 r r r 0 αnp1 (1 − ρt2 ) f2 ψ 1 − Kp11 − Kp21 αr1 (1 − ψ) 1 − K r1 − K r1 0 p2 p1 np 0 0 r2 w 0 αp2 ρp2 es2 Kp2 0 0 w w w 0 − Kp2 ρt2 f2 ψ 1 − Kp1 αnp 0 0 ~r1 , F = F~w = 0 0 r r12 1 α ρp2 es2 Kp2 0 r1 r1 r1 α ρ f ψ 1 − K − K 0 p1 p2 np t2 2 w w 0 1 − αp1 (1 − ρp1 ) es1 Kp1 w w 0 1 − αp2 (1 − ρp2 ) es2 Kp2 w w w 0 1 − αnp 1− Kp1 − Kp2 r1 r1 r1 w 1 − αp1 Kp1 1 − αp1 ρp1 es1 Kp1 r1 r1 1 − αp2 (1 − ρp2 ) es2 Kp2 0 r1 r1 r1 1 − αnp 1 − Kp1 − Kp2 0 0 0 r2 w 0 1 − α ρ e K p2 s2 p2 p2 0 0 0 0 r1 r 12 (1 − α ) ρp2 es2 Kp2 0 0 0 (S165) 37 and 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r2 r2 αp1 (1 − ρp1 ) es1 Kp1 0 r2 r2 αp2 Kp2 0 αr2 (1 − ρ ) f ψ 1 − K r2 − K r2 0 np t1 1 p1 p2 r2 r2 r2 0 αnp f2 ψ 1 − Kp1 − Kp2 r2 r2 r2 0 − K (1 − ψ) 1 − K α p2 p1 np (S166) F~r2 = , F~r12 = r r2 r 12 r12 12 α K α ρp1 es1 Kp1 p1 r12 r12 α Kp2 0 r r r r r2 αr12 1 − Kp112 − Kp212 ρt1 f1 ψ 1 − Kp12 − Kp22 αnp 0 0 0 0 0 0 0 0 0 0 0 0 r2 r2 0 1 − αp1 (1 − ρp1 ) es1 Kp1 r2 r2 0 1− αp2 Kp2 r r r 2 2 0 1 − αnp2 1 − Kp1 − Kp2 r12 r12 r2 r12 (1 − α ) K (1 − α ) ρ e K p1 s1 p1 p1 r r 12 (1 − α 12 ) Kp2 0 r12 r12 r12 (1 − α ) 1 − Kp1 − Kp2 0 R0 is the maximum eigenvalue of a 30 × 30 matrix. As in the single-drug model we can put the matrix into block-triangular form where each block is constructed from F~x and λ~x (x ∈ 38 {w, r1 , r2 , r12 }). There are four non-zero eigenvalues: w w w αp1 + 1 − αp1 χ (1 − ρp1) es1 ei1 Kp1 w w w + αp2 + 1 − αp2 χ (1 − ρp2 ) es2 ei2 Kp2 w + αnp [et1 f1 (1 − ρt1) ψ+ et2 f2 (1 − ρt2 ) ψ + (1 − ψ)] w w w + 1− αnp χ 1 − Kp1 − Kp2 , r1 r1 r1 r1 + 1 − α α φ p1 χ Kp1 p1 r1 r1 r1 χ (1 − ρp2 ) es2 ei2 Kp2 + 1 − αp2 + αp2 β r1 [f1 ψ + et2 f2 (1 −ρt2 ) ψ + (1 − ψ)] + αnp R0 = × max γ r1 r1 r1 , − Kp2 + 1− αnp χ 1 − Kp1 r2 r2 r2 r2 φ αp1 + 1 − αp1 χ (1 − ρp1 ) re2s1 ei1 Kp1 r2 r2 + αp2 + 1 − αp2 χ Kp2 r2 [et1 f1 (1 − ρt1) ψ+ f2 ψ + (1 − ψ)] + αnp r2 r2 r2 , − Kp2 + 1 − αnp χ 1 − Kp1 r12 r12 r12 φ {α + (1 − α ) χ} A.2 (S167) Treatment and Prophylaxis model The possible flows are shown in the following figures. We define the force of infection row vectors (1 × 18) (note the transpose): ei 0 0 0 et 0 0 0 1 0 0 0 1 0 0 0 0 et 0 0 0 1 0 0 ei 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 r r r p t tp r r r w ~t ~p ~tp λ~ = β 0 , λ = βφ 0 , λ = βφ 0 , λ = βφ 1 ei χ 0 0 0 χ 0 0 0 0 0 χ 0 0 χ 0 0 0 0 ei χ 0 0 0 χ 0 0 0 0 χ 0 0 0 χ 39 (S168) S es K w (1 − ρp ) Epw αpw Ipw (1 − αpw ) Aw p ρp (1 − K w ) αrp r Ip p (1 − αrp ) r App w Enp w αnp ψ (1 − ρt ) w Inp,t ρt (1 − ψ) rt Inp w ) (1 − αnp w Inp,nt Aw np Figure S24: Tree diagram for wild strain exposures 40 K rp S αrp r Ep p r Ip p (1 − αrp ) r App (1 − K rp ) r Enpp αrp ψ (1 − ρt ) r p Inp,t ρt (1 − ψ) r Inptp (1 − αrp ) r p Inp,nt r Anpp Figure S25: Tree diagram for prophylaxis-resistant strain exposures 41 S es K rt Eprt αprt (1 − ρp ) Iprt (1 − αprt ) Arpt ρp (1 − K rt ) αrtp r Ip tp (1 − αrtp ) r Aptp rt αnp rt Enp rt Inp rt (1 − αnp ) Arnpt Figure S26: Tree diagram for treatment-resistant strain exposures 42 K rtp S αrtp r Eptp r Ip tp (1 − αrtp ) r Aptp (1 − K rtp ) αrtp r r Enptp Inptp (1 − αrtp ) r Anptp Figure S27: Tree diagram for multi-resistant strain exposures We construct column vectors F~w , F~rp , F~rt and F~rtp as follows: αpw (1 − ρp ) es K w 0 w w αnp 0 w(1 − ρt ) ψ (1 − Kw ) αnp (1 − ψ) (1 − K ) 0 rp w rp rp α ρp es K α K r α p (1 − ρt ) ψ (1 − K rp ) 0 r α p (1 − ψ) (1 − K rp ) 0 0 0 w w αnp ρt ψ (1 − K ) 0 0 0 r w ~ ~ p , F = F = αrp ρt ψ (1 − K rp ) 0 1 − αw (1 − ρp ) es K w 0 p 1 − αw (1 − K w ) 0 np r r p p (1 − αrp ) ρp es K w (1 − α ) K rp rp 0 (1 − α ) (1 − K ) 0 0 0 0 0 0 0 0 43 (S169) and F~rt = 0 0 0 0 0 0 0 0 0 0 0 0 rt rt αp (1 − ρp ) es K 0 rt rt αnp (1 − K ) 0 rtp rtp αrtp ρp es K rt α K , F~rtp = r αrtp (1 − K tp ) 0 0 0 0 0 0 0 0 0 rt rt 1 − αp (1 − ρp ) es K 0 rt rt 0 1 − αnp (1 − K ) (1 − αrtp ) K rtp (1 − αrtp ) ρp es K rt (1 − αrtp ) (1 − K rtp ) 0 (S170) x (x ∈ {w, rp , rt , rtp }). where K w , K rp , K rt and K rtp are the steady state proportions of Cpx / Cpx + Cnp R0 is the maximum eigenvalue of the 18×18 matrix F~w λ~w + F~rp λ~rp + F~rt λ~rt + F~rtp λ~rtp /γ. We put the matrix into block-triangular form and obtain four non-zero eigenvalues: w w χ (1 − ρp ) es ei K w + 1 − α α p p w w + α [e (1 − ρ ) ψ + (1 − ψ)] + 1 − α χ (1 − K w ) , t t np np β {αrp (K rp + [et (1 −ρt ) ψ + (1 − ψ)] (1 − K rp )) + (1 − αrp ) χ} , φrp R0 = × max φrt αprt + 1 − αprt χ (1 − ρp) es ei K rt γ rt rt + 1 − αnp χ (1 − K rt ) , + αnp rtp rtp φ {α + (1 − αrtp ) χ} (S171) References J. M. McCaw and J. McVernon. Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic. Mathematical BioSciences, 209(2):336–360, 2007. 2, 28 44