Download UNIT CIRCLE

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
UNIT CIRCLE
coordinates are
(cos θ, sin θ)
( 0, 1)
►( ,
►(
)
,
►(
π►
(-1, 0)
0 ►(1, 0)
FUNDAMENTALS
cos(- θ ) = cos θ
=
, )
sin(- θ ) = – sin θ
tan θ
=
=
cot θ =
=
sec θ
=
=
csc θ
=
=
sin2 θ + cos2 θ = 1
==
sec2 θ = 1 + tan2 θ
csc2 θ = 1 + cot2 θ
h
θ
y
x
Addition Identities
Double-Angle Identities
sin  2   2 sin  cos
sin( A  B)  sin A cos B  cos A sin B
cos  2   cos2   sin 2 
sin( A  B)  sin A cos B  cos A sin B
 2 cos 2   1
cos( A  B)  cos A cos B  sin A sin B
 1  2sin 2 
cos( A  B)  cos A cos B  sin A sin B
Half-Angle Identities
sin

2

1  cos 
2
cos

2
[Memory tip: “sinus-minus”]

1  cos 
2
Power Reducing Form of Half-Angle Identities
sin 2 A  1 1  cos 2 A
cos2 A  1 1  cos 2 A
2
[Memory tip: “sinus-minus”]
2
Solving Triangles and Areas of Triangles Useful for applications
Law of Sines
sin A sin B sin C


a
b
c
Law of Cosines
B
c
a  b  c  2bc cos A
2
2
2
A
C
b  a  c  2ac cos B
2
2
a
2
b
c  a  b  2ab cos C
2
2
2
Area of triangle given two sides a , b and the included angle 
A
1
ab sin 
2
Heron’s formula for area of triangle given sides a, b, and c
A  s  s  a  s  b  s  c  where s 
abc
2
Inverse Trigonometric Functions


If   sin a , then
If   cos a , then 0    
 
1
1
2
2
If   tan 1 a , then


 
2
2
Related documents