Download Poisson algebras of block-upper-triangular bilinear forms and braid

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Poisson algebras of block-upper-triangular bilinear forms and
braid group action
Marta Mazzocco, Loughborough University
Work in collaboration with Leonid Chekhov
– Typeset by FoilTEX –
1
Bilinear forms on CN
hx, yi := xT A y,
∀ x, y ∈ CN .
“Block–upper–triangular bilinear form” = “A block–upper–
triangular”



A=

A1,1 A1,2 . . . A1,n
O A2,2 . . . A2,n
... ... ... ...
O
O . . . An,n



,

AI,J ∈ GL(m),
det(AI,I ) = 1
An,m ⊂ GL(nm) is the set of such bilinear forms.
ak,l denote the entries of A.
– Typeset by FoilTEX –
2
Homogeneous quadratic Poisson bracket on GLN (C), N = nm:
{ai,j , ak,l } = sign(j − l) + sign(i − k) ai,l ak,j +
+ sign(j − k) + 1 aj,l ai,k + sign(i − l) − 1 al,j ak,i
• This bracket admits a Poisson reduction to An,m for any n, m
such that N = nm.
• Admits a suitable action of Braid grorup preserving it.
• Affine version and quantisation.
– Typeset by FoilTEX –
3
Why do we care?
• Case m = 1: Dubrovin–Ugaglia bracket appearing in Frobenius
Manifold theory. Its quantization is also known as Nelson–Regge
algebra in 2 + 1-dimensional quantum gravity and as Fock–Rosly
bracket in Chern–Simons theory.
• Case m = 2: its quantization is a Twisted Yangian associated to
the Lie algebra sp2n.
• Algebraic geometers are interested in the vanishing locus of
quadratic Poisson algebras on Projective spaces (Hitchin 2011).
– Typeset by FoilTEX –
4
Poisson reductions:
{ai,j , ak,l } = sign(j − l) + sign(i − k) ai,l ak,j +
+ sign(j − k) + 1 aj,l ai,k + sign(i − l) − 1 al,j ak,i
{aN,1, ak,l } = (−1+1)aN,l ak,1+(−1+1)a1,l aN,k +(1−1)al,1ak,N ,
{aN,1, a1,l } = a1,l aN,1
for
{aN,1, aN,l } = −aN,1aN,l
for
l 6= 1, N,
for
l 6= 1, N,
In general:
– Typeset by FoilTEX –
5
k, l 6= 1, N,
Case m = 1, Dubrovin–Ugaglia bracket
{ai,j , ak,l } = (sign(i − l) − sign(j − l))(al,j ak,i − al,iak,j ) +
+ sign(i − k) − sign(j − k) (ak,j ai,l − ak,iaj,l )
Notation:



A=

1 a1,2 . . . a1,n
0
1 . . . a2,n
... ... ... ...
0 ... 0
1



∈A

Braid group action in the context of Frobenius manifolds due to
Dubrovin.
– Typeset by FoilTEX –
6
Bondal’s approach for m = 1.
• GLn(C) acts on bilinear forms as
∀A, B ∈ GLn(C),
A 7→ BAB T .
• This action of GL(Cn) does not preserve A.
• For every A ∈ A we take a subset:
n
T
MA = B ∈ GL(C ) | A 7→ BAB ∈ A .
• We define a groupoid
(A, M) = {(A, B) such that A ∈ A, B ∈ MA}
M = ∪A∈AMA
– Typeset by FoilTEX –
7
Case m = 1: groupoid structure.
(A, M) = {(A, B) such that A ∈ A, BAB T ∈ A}
Partial multiplication:
m
(B1AB1T , B2), (A, B1)
Identity morphism:
= (A, B2B1).
e = (A, 11),
Inverse:
i : (A, B) → (BAB T , B −1).
– Typeset by FoilTEX –
8
Case m = 1: algebroid structure.
Infinitesimal version of the condition BAB T ∈ A.
Lie algebroid (A, g):
g := ∪A∈AgA
T
gA := g ∈ gln(C), | A + Ag + g A ∈ A .
Natural isomorphism anchor map:
DA : gA →
TA A
g 7→ Ag + g T A.
Bondal’s main idea: give a parameterization of all g ∈ gA.
– Typeset by FoilTEX –
9
Case m = 1: Bondal’s parameterization of all g ∈ gA
T A ∼ {strictly upper triangular matrices}
T ∗A ∼ {strictly lower triangular matrices}
⇒ Lemma: The following map
gA
PA : TA∗ A →
w 7→ P−,1/2(wA) − P+,1/2(wT AT ),
(1)
where P±,1/2 are the projection operators:
P±,1/2ai,j
1 ± sign(j − i)
:=
ai,j ,
2
i, j = 1, . . . , n,
(2)
defines an isomorphism between the Lie algebroid (g, DA) and the
Lie algebroid (T ∗A, DAPA).
– Typeset by FoilTEX –
10
Case m = 1: Poisson structure
The Lie algebroid (T ∗A, DAPA) defines the Poisson bi-vector:
C ∞(A)
Π : TA∗ A × TA∗ A →
(ω1, ω2)
Tr (ω1DAPA(ω2))
The Poisson structure is thus automatically invariant under groupoid
action.
The braid group elements are:
βi,i+1A =
– Typeset by FoilTEX –
T
Bi,i+1ABi,i+1
,
Bi,i+1 =
...
i
i+1
...







1
...
1
ai,i+1
1
−1
0
1
...
1
11


.


Case m = 1: Central elements
T
T
Since βi,i+1A = Bi,i+1ABi,i+1
and βi,i+1AT = Bi,i+1AT Bi,i+1
⇒ the central elements are generated by
T
det A + λA
⇒
n
2
central elements so that the symplectic leaves have dimension
– Typeset by FoilTEX –
n(n − 1) h n i
−
2
2
12
General case: We keep the same Poisson bi–vector:
Π : TA∗ A × TA∗ A →
(ω1, ω2)
C ∞(A)
Tr (ω1DAPA(ω2))
⇒ we keep the structure
TA∗ An,m
w
PA
DA
→
gA
→ TAAn,m
7→ P−,1/2(wA) − P+,1/2(wT AT ) 7→ A g + g T A
where gA := Im(PA)
T A ∼ {upper block triangular matrices s.t. Tr(A−1
J,J δAJ,J ) = 0}
T ∗A ∼ {lower block triangular matrices s.t. Tr(A−1
J,J wJ,J ) = 0}
dim (ker PA) > 0.
– Typeset by FoilTEX –
13
To find the braid group generators we need to find the groupoid
(An,m, M) which integrates (An,m, g).
We deal with the case of full size matrices N × N .
N
• dim(M) = dim g = N 2 − 2
• M ⊂ ∪A∈AN {B| BAB T ∈ AN }
How to find the groupoid? Idea: it must preserve central
elements.
N +2
T
det A + λA
generates
independent central elements.
2
N +2
2
is not always even
N −
2
– Typeset by FoilTEX –
14
⇒ We need more central elements. Insight: freedom of block upper
triangular reduction.
⇒ The bottom left minors:


AN −d+1,1 . . . AN +d−1,d


.
.
Md := det 
.
...
.
,
AN,1
...
AN,d
must play a role.
bd := det MN −d/ det Md,
for
N +1
d = 1, . . . ,
,
2
are central elements.This leads to symplectic leaves of the dimension
N2 − N
– Typeset by FoilTEX –
always even
15
General case
Theorem The Lie groupoid M is
M := UA∈An,m MA,
where
MA :=
B ∈ GLN | BAB T ∈ An,m and
o
m
(I)
(I)
T
bd (BAB ) = bd (A), ∀d = 0, . . . , [ ], I = 1, . . . , n ,
2
The braid group generators are found as elementary elements of
this groupoid.
– Typeset by FoilTEX –
16
General case: braid group action
T
βI,I+1[A] = BI,I+1ABI,I+1
,
I = 1, . . . , n − 1

E

...

.. 
E


−T
T
A
A
I 
I,I+1 I,I −E
BI,I+1 =

I +1 
O
AI,I A−T
I,I
.. 

E

...

– Typeset by FoilTEX –

E






,





17
Affinisation
[L. Chekhov, M.M. Advances 2010]
Generating function:
Gi,j (λ) :=
(0)
Gi,j
+
∞
X
(0)
Gi,j
(p) −p
Gi,j λ ,
= ai,j ,
p=1
the matrices G(p) are arbitrary full-size matrices.
k
k
j
l
(1)
Gij
j
l
k
j
l
(2)
Gij
(0)
Gji
i
– Typeset by FoilTEX –
i
i
18
λ+µ
{Gi,j (λ), Gk,l (µ)} = sign(i − k) −
Gk,j (λ)Gi,l (µ) +
λ−µ
λ+µ
+ sign(j − l) +
Gk,j (µ)Gi,l (λ) +
λ−µ
1 + λµ
Gi,k (λ)Gj,l (µ) +
+ sign(j − k) −
1 − λµ
1 + λµ
+ sign(i − l) +
Gl,j (λ)Gk,i(µ).
1 − λµ
This is an abstract Poisson algebra whatever zero level we pick.
– Typeset by FoilTEX –
19
Affine case with m = 1
A further braid group generator:
T
βn,1[G(λ)] = Bn,1(λ)G(λ) Bn,1(λ ) ,
−1
where




Bn,1(λ) = 


– Typeset by FoilTEX –
0
0
..
0
−λ−1
0
1
0
..
0
... 0
λ
0 ... 0
..
... ...
... 1
0
(1)
. . . 0 Gn,1
(3)




.


20
Affine case with arbitrary m




Bn,1(λ) = 


– Typeset by FoilTEX –
λAn,nA−T
n,n
O
E
...
E
−1
−λ E
(1) T −T
Gn,1 An,n







(4)
21
Quantisation:
1
T1 2
−1
2
−1
T1 1
R(λ, µ)G (λ)R(λ , µ) G (µ) = G (µ)R(λ , µ) G (λ)R(λ, µ)
R(λ, µ) = (λ − µ)
X
Eii ⊗ Ejj + (q −1λ − qµ)
+ (q −1 − q)λ
Eii ⊗ Eii +
i
i6=j
X
X
Eij ⊗ Eji + (q −1 − q)µ
i<j
X
Eij ⊗ Eji
i>j
• For m = 1: twisted q–Yangian Yq′(on)
• Forf m = 2: twisted q–Yangian Yq′(sp2n).
– Typeset by FoilTEX –
22
Quantisation of braid group action, m = 2:
We need a quantum inverse:
1
a11 a12
a22
(q − 1/q)a21 − a12
−1
forA =
A =
a21 a22
a11
qdet −q 2a21



.. 


I 
BI,I+1 =

I +1 
.. 



– Typeset by FoilTEX –

E
...
E
2
−q
E
qATI,I+1A−T
I,I
O
AI,I A−T
I,I
E
...
E






,





23
Related documents