Download Fluids

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Lift (force) wikipedia , lookup

Centripetal force wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Ferrofluid wikipedia , lookup

Classical central-force problem wikipedia , lookup

Work (physics) wikipedia , lookup

Pressure wikipedia , lookup

Mass versus weight wikipedia , lookup

Reynolds number wikipedia , lookup

Rheology wikipedia , lookup

Biofluid dynamics wikipedia , lookup

Blade element momentum theory wikipedia , lookup

Bernoulli's principle wikipedia , lookup

History of fluid mechanics wikipedia , lookup

Buoyancy wikipedia , lookup

Fluid dynamics wikipedia , lookup

Transcript
 [SHIVOK SP211]
October 22, 2015 CH 14 Fluids
I.
WhatisaFluid?
A. Afluid,incontrasttoasolid,isasubstancethatcan_________________.
B. Fluidsconformtotheboundariesof________________________________in
whichweputthem.Theydosobecauseafluidcannotsustainaforce
thatistangentialtoitssurface.Thatis,afluidisasubstancethatflows
becauseitcannotwithstandashearingstress.
C. Itcan,however,exertaforceinthedirection__________________________
toitssurface.
II.
DensityandPressure
A. Tofindthedensityofafluidatanypoint,weisolateasmall
volumeelementVaroundthatpointandmeasurethemassmofthe
fluidcontainedwithinthatelement.Ifthefluidhasuniformdensity,
then
1.
Densityisascalarproperty;itsSIunitisthekilogrampercubicmeter.
B. IfthenormalforceexertedoveraflatareaAisuniformoverthat
area,thenthepressureisdefinedas:
1.
TheSIunitofpressureisthenewtonpersquaremeter,whichisgivena
specialname,thePascal(Pa).
2.
1atmosphere(atm)=
Page1
[SHIVOK SP211]
October 22, 2015 3.
Exampleproblem:
a)
Apartiallyevacuatedairtightcontainerhasatightfittinglidof
surfacearea77cm2andnegligiblemass.Iftheforcerequiredtoremove
thelidis480Nandtheatmosphericpressureis1.0x105Pa,whatisthe
internalairpressure?
(1)
Solution:
III.
FluidsatRest
A. Thepressureatapointinafluidinstaticequilibriumdependson
thedepthofthatpointbutnotonanyhorizontaldimensionofthe
fluidoritscontainer.
1.
Above:Atankofwaterinwhichasampleofwateriscontainedinan
imaginarycylinderofhorizontalbaseareaA.
2.
Below:Afree‐bodydiagramofthewatersample.
Page2
[SHIVOK SP211]
October 22, 2015 3.
Thebalanceofthe3forcesiswrittenas:
4.
Ifp1andp2arethepressuresonthetopandthebottomsurfacesofthe
sample,
5.
Sincethemassmofthewaterinthecylinderis,m=V,wherethe
cylinder’svolumeVistheproductofitsfaceareaAanditsheight(y1‐y2),then
6.
Therefore,
7.
Ify1isatthesurfaceandy2isatadepthhbelowthesurface,then
(wherepoisthepressureatthesurface,andpthepressureatdepthh).
B. Exampleproblems:
1.
Crewmembersattempttoescapefromadamagedsubmarine100.0m
belowthesurface.Whatforcemustbeappliedtoapop‐outhatch,whichis
1.20mby0.60m,topushitoutatthatdepth?Assumethatthedensityofthe
oceanwateris1024kg/m3andtheinternalairpressureisat1.00atm.
Page3
[SHIVOK SP211]
October 22, 2015 2.
Atadepthof10.9km,theChallengerDeepintheMarianasTrenchof
thePacificOceanisthedeepestsiteinanyocean.Yet,in1960,DonaldWalsh
andJacquesPiccardreachedtheChallengerDeepinthebathyscaphTrieste.
Assumingthatseawaterhasauniformdensityof1024kg/m3,approximate
thehydrostaticpressure(inatmospheres)thattheTriestehadtowithstand.
IV.
Pascal’sPrinciple
A. Achangeinthepressureappliedtoanenclosedincompressible
fluidistransmittedundiminishedtoeveryportionofthefluidandto
thewallsofitscontainer.
Page4
[SHIVOK SP211]
October 22, 2015 B. Pascal’sPrincipleandtheHydraulicLever
1.
TheforceF isappliedontheleftandthedownwardforceF fromthe
i
o
loadontherightproduceachangepinthepressureoftheliquidthatis
givenby
2.
Ifwemovetheinputpistondownwardadistanced ,theoutputpiston
i
movesupwardadistanced ,suchthatthesamevolumeVofthe
o
incompressibleliquidisdisplacedatbothpistons.
3.
Thentheoutputworkis:
Page5
[SHIVOK SP211]
October 22, 2015 C. Sampleproblem:
1.
Apistonofcross‐sectionalareaaisusedinahydraulicpresstoexerta
smallforceofmagnitudefontheenclosedliquid.Aconnectingpipeleadstoa
largerpistonofcross‐sectionalareaA(Fig.below).(a)WhatforcemagnitudeF
willthelargerpistonsustainwithoutmoving?(b)Ifthepistondiametersare
3.80cmand53.0cm,whatforcemagnitudeonthesmallpistonwillbalancea
20.0kNforceonthelargepiston?
a)
Solution:
(a) (b) Page6
[SHIVOK SP211]
October 22, 2015 V.
ArchimedesPrinciple
A. Whenabodyisfullyorpartiallysubmergedinafluid,abuoyant
forcefromthesurroundingfluidactsonthebody.Theforceis
directedupwardandhasamagnitudeequaltotheweightofthefluid
thathasbeendisplacedbythebody.
1.
Thenetupwardforceontheobjectisthebuoyantforce,F .
2.
Thebuoyantforceonabodyinafluidhasthemagnitude
b
wheremfisthemassofthefluidthatisdisplacedbythebody.
Page7
[SHIVOK SP211]
October 22, 2015 B. FloatingandApparentWeight
1.
Whenabodyfloatsinafluid,themagnitudeF ofthebuoyantforceon
b
thebodyisequaltothemagnitudeF ofthegravitationalforceonthebody.
g
2.
Thatmeans,whenabodyfloatsinafluid,themagnitudeF ofthe
g
gravitationalforceonthebodyisequaltotheweightm gofthefluidthathas
f
beendisplacedbythebody,wherem isthemassofthefluiddisplaced.
f
3.
Thatis,afloatingbodydisplacesitsownweightoffluid.
4.
Theapparentweightofanobjectinafluidislessthantheactualweight
oftheobjectinvacuum,andisequaltothedifferencebetweentheactual
weightofabodyandthebuoyantforceonthebody.
Page8
[SHIVOK SP211]
October 22, 2015 C. Sampleproblem:
1.
Whatistheapparentweightofasphereofradius r  0.020m and
kg
thatisfullysubmergedinwater
m3
kg
(density  f  1000 3 )?
m
density   1500
a)
Solution:
Page9
[SHIVOK SP211]
October 22, 2015 VI.
IdealFluidsinMotion
A. Steadyflow:Insteady(orlaminar)flow,thevelocityofthemoving
fluidatanyfixedpointdoesnotchangewithtime.
B. Incompressibleflow:Weassume,asforfluidsatrest,thatourideal
fluidisincompressible;thatis,itsdensityhasaconstant,uniform
value.
C. Nonviscousflow:Theviscosityofafluidisameasureofhow
resistivethefluidistoflow;viscosityisthefluidanalogoffriction
betweensolids.Anobjectmovingthroughanonviscousfluidwould
experiencenoviscousdragforce—thatis,noresistiveforcedueto
viscosity;itcouldmoveatconstantspeedthroughthefluid.
D. Irrotationalflow:Inirrotationalflowatestbodysuspendedinthe
fluidwillnotrotateaboutanaxisthroughitsowncenterofmass.
VII.
TheEquationofContinuity
Page
10
[SHIVOK SP211]
October 22, 2015 A. Theamountofvolume(DeltaV)offluidflowingpastthedotted
lineinthetimeintervaldeltatis:
B. Applyingtheaboveequationforboththeleftandrightdotted
linesweget:
C. Whichyields
1.
Whatitsaysinlaymen’stermsisthatthevolumetricflowrateis
constant;thusthespeedincreasesifwerestrictthearea(i.e.youputyour
thumbovertheendofthegardenhoseandthewatercameoutatahigher
speed):
2.
Ifwemultiplybothsidesoftheequationbydensityofthefluidweget
massflowrate:
Page
11
[SHIVOK SP211]
October 22, 2015 D. Example:WaterStream
1.
Whydoesthewaterstreamnarrowasitfallsfromthefaucet?
2.
Solution:
Page
12
[SHIVOK SP211]
October 22, 2015 VIII. Bernoulli’sEquation
A. Ifthespeedofafluidelementincreasesastheelementtravels
alongahorizontalstreamline,thepressureofthefluidmustdecrease,
andconversely.
a)
Fig.14‐19FluidflowsatasteadyratethroughalengthLofa
tube,fromtheinputendatthelefttotheoutputendattheright.From
timetin(a)totimet+tin(b),theamountoffluidshowninpurple
enterstheinputendandtheequalamountshowningreenemergesfrom
theoutputend.
2.
Thatmeansthat
Or
Page
13
[SHIVOK SP211]
October 22, 2015 B. Proof
1.
Thechangeinkineticenergyofthesystemistheworkdoneonthe
system.
2.
Ifthedensityofthefluidis,
3.
Theworkdonebygravitationalforcesis:
4.
Thenetworkdonebythefluidis:
5.
Therefore,
6.
Finally,
Page
14
[SHIVOK SP211]
October 22, 2015 C. Sampleproblems:
1.
AcylindricaltankwithalargediameterisfilledwithwatertoadepthD
=0.30m.Aholeofcross‐sectionalareaA=6.5cm2inthebottomofthetank
allowswatertodrainout.(a)Whatistherateatwhichwaterflowsout,in
cubicmeterspersecond?(b)Atwhatdistancebelowthebottomofthetankis
thecross‐sectionalareaofthestreamequaltoone‐halftheareaofthehole?
where h1 is the height of the water in the tank, p1 is the pressure there, and v1 is the speed of the water there; h2 is the altitude of the hole, p2 is the pressure there, and v2 is the speed of the water there.  is the density of water. The pressure at the top of the tank and at the hole is atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at the top; it is much smaller than the speed at the hole. The Bernoulli equation then becomes (b) We use the equation of continuity: A2v2 = A3v3, where A3  12 A2 and v3 is the water speed where the area of the stream is half its area at the hole. Thus The water is in free fall and we wish to know how far it has fallen when its speed is doubled to 4.84 m/s. Since the pressure is the same throughout the fall, Page
15
[SHIVOK SP211]
October 22, 2015 2.
Figurebelowshowsastreamofwaterflowingthroughaholeatdepth
h  10cm inatankholdingwatertoheight H  40cm .(a)Atwhatdistancex
doesthestreamstrikethefloor?(b)Describetheprocessyouwoulduseto
findthevalueofhwhichmaximizesthedistancex.
a)
Solution
Page
16