Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 29
Maxwell’s Equations and
Electromagnetic Waves
Coulomb Oersted
France
Denmark
Ampere
France
Faraday
England
Lenz
Russia
Maxwell
Scotland
All electric and magnetic phenomena could be
described using only 4 equations involving electric
and magnetic fields —— Maxwell’s equations
→ Culmination: Electromagnetic waves
2
Changing E produces B
Changing magnetic field
electric field
Changing electric field
magnetic field ?
A beautiful symmetry in nature:
Ampere’s law:
 B  dl 
0 I  S1
0  S2
E  B
S2
S1
?
I
3
Discontinuity of current
S2
Ampere’s law:
 B  dl 
S1
0 I  S1
I
0  S2
+
+
+
+
-
E
Contradiction? → discontinuity of the current

j  dS   I  0
Which result is right?
S1  S2
An extra term in Ampere’s law → changing E
4
Displacement current
Conduction current:
S1
dQ d
I

S
dt
dt
I
I d
dE
 j 
 0
S
dt
dt
Electric field between plates:
Displacement current:
Q
S2
+
+
+
+
-
Q
E

E
0
dE
dE
jD   0
, ID  0
dt
dt
5
Generalized Ampere’s law
ID
I
dE
dE
jD   0
, ID  0
dt
dt
Ampere’s law in a general form:
dE
 B  dl  0 (I  I D )in  0 Iin  0 0 dt
1) ID is produced by changing electric field
2) Continuity of total current:
(j j
D
)  dS  0
6
Charging capacitor
Example1: A parallel-plate capacitor is charging
with dE / dt  2 109V / m  s. Determine (a) the
conduction current I ; (b) magnetic field.
Solution: (a)
dE
jD   0
dt
Continuity of total current:
I
0.1m
dE
I  I D  jD S   R  0
dt
2
 5.56 104 A
7
dE / dt  2 10 V / m  s
9
0.1m
(b) magnetic field ?
Generalized Ampere’s law:
 B  dl   (I  I
0
I
r
)
D in
0 0 dE
dE
2
r  0.1m : B  2 r  0   0
 r  B 
r
dt
2 dt
0 I
r  0.1m : B  2 r  0 I  B 
2 r
8
Capacitor in LC circuit
Question: The voltage on a capacitor is changing
as V  V0 cos t . What is the EMF on the square
coil inside the capacitor?
dE  0 dV
jD   0

dt
d dt
μ0 jD
B
r  B
2
d
a
a
dB
 
dt
9
Summary of electromagnetism
Electrostatic / induced electric / total electric field:
E
s
E
s
 dS 
Qin
0
 dl  0;
;
 E  dS  0
i

dB
 Ei  dl   dt 
Magnetic field created by IC or ID :
Q
 E  dS  
0
dB
 E  dl   dt
 B  dS  0
dE
 B  dl  0 (I  I D )in  0 I  0 0 dt
10
Maxwell’s equations (1)
Finally we can state all 4 of Maxwell’s equations:
 E  dS 
Q
0
① source of E
 B  dS  0
② no magnetic
charges/monopoles
d B
 E  dl   dt
③ changing B → E
dE
 B  dl  0 I  0 0 dt
④ changing E → B
11
Maxwell’s equations (2)
Differential form of Maxwell’s equations:

E 
0
 B  0
B
 E  
t
E
 B  0 j  0 0
t
1) Basic equations for
all electromagnetism
2) As fundamental as
Newton’s laws
3) Important outcome:
electromagnetic waves
12
Production of EM waves
Maxwell’s prediction
Hertz’s experiment
“Antenna”
B
Near field & radiation field
E
→ electromagnetic wave
 (t )
Also by accelerating charges
E
Antenna
Ground
13
Wave equations for EM wave
Free space: no charges or conduction currents
 E  0

 B  0

   E   B

t

   B  0 0 E

t
2

E
2
  E  0  0 2
t

   (  E )   (  B)
t
2 E
  0  0 2
t
 ( E)  ( E) 2 E
 2 E
Wave equation!
14
Speed of EM wave
2

E
2
 E  0  0 2
t
2

B
2
 B  0  0 2
t
3-D wave equation → 1-D (plane) wave equation
2 E
2 E
 0  0 2 ,
2
x
t
2 B
2 B
 0  0 2
2
x
t
Compare with standard wave equation:
2
2 y

y
1
2
8

v

v


3.0

10
m/s  c !
2
2
t
x
0 0
15
Properties of EM wave
2
2

E

E
2
c
 2 ,
2
x
t
Particular solutions:
1) Transverse wave
2) In phase:
2
2

B

B
2
c
 2
2
x
t
x
E  E0 cos  (t  )
c
x
B  B0 cos  (t  )
c
E
c
B
3) E  B
16
Energy in EM wave
Total energy stored per unit volume in EM wave:
2
2
1
1
B
B
u  0 E2 
 0 E2 
2
2 0
0
E
( c
B
1
0 0
)
Energy transports per unit time per unit area:
dU  udV  u  A  cdt
EB
dU
S
 uc 
0
A  dt
17
Poynting vector
Consider the direction of energy transporting:
S
1
0
( E  B)
→ Poynting vector
1 E0 B0
Time averaged S is intensity: S 
2 0
Example 2: Show the direction
of energy transporting inside the
battery and resistor.
I
B
E
S
18
Sunshine
Example3: Radiation from the Sun reaches the
Earth at a rate about 1350W/m2. Assume it is a
single EM wave, calculate E0 and B0.
Solution: Rate → time averaged S / intensity
2S
1 E0 B0 1
2
3

E


1.01

10
V /m
S
  0 cE0
0
 0c
2 0
2
1
 u  c  um c
2
E0
B0 
 3.37  106 T
c
19
*Radiation pressure
EM waves carry energy → also carry momentum
Be absorbed / reflected → radiation pressure
Absorbed: P  S
c
Reflected: P  2S
c
20
Related documents