Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Weierstrass Institute for Applied Analysis and Stochastics Asymptotics beats Monte Carlo: The case of correlated local vol baskets Christian Bayer and Peter Laurence WIAS Berlin and Università di Roma Approximations for local vol baskets · November 29, 2014 · Page 1 (30) Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Outline 1 Introduction 2 Outline of our approach 3 Heat kernel expansions 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 2 (30) Outline 1 Introduction 2 Outline of our approach 3 Heat kernel expansions 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 3 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods I (Quasi) Monte Carlo method I Fourier transform based methods I Approximation formulas n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods Pros: fast, general Cons: curse of dimensionality, path-dependence may or may not be easy to include I (Quasi) Monte Carlo method I Fourier transform based methods I Approximation formulas n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods I (Quasi) Monte Carlo method Pros: very general, easy to adapt, no curse of dimensionality Cons: slow, quasi MC may be difficult in high dimensions I Fourier transform based methods I Approximation formulas n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods I (Quasi) Monte Carlo method I Fourier transform based methods Pros: very fast to evaluate (“explicit formula”) Cons: only available for affine models, difficult to generalize, curse of dimensionality I Approximation formulas n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods I (Quasi) Monte Carlo method I Fourier transform based methods I Approximation formulas Pros: very fast evaluation Cons: derived on case by case basis, therefore very restrictive n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Methods of European option pricing u(t, S t ) = e−r(T −t) E f (S T ) | S t Example (Example treated in this work) P + − K , at least one weight positive I f (S) = I n large (e.g., n = 500 for SPX) I PDE methods (Quasi) Monte Carlo method Fourier transform based methods Approximation formulas Work horse methods: PDE methods and (in particular) (Q)MC Particular models allowing approximation formulas (e.g., SABR formula) or FFT (Heston model) very popular I I I I I n i=1 wi S i Approximations for local vol baskets · November 29, 2014 · Page 4 (30) Outline 1 Introduction 2 Outline of our approach 3 Heat kernel expansions 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 5 (30) Setting I Local volatility model for forward prices dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n, D E dWi (t) , dW j (t) = ρi j dt P n + − K , at least I Generalized spread option with payoff one wi positive I Goal: fast and accurate approximation formulas, even for high n I n = 100 or n = 500 not uncommon (index options) i=1 wi F i Example I Black-Scholes model: σi (Fi ) = σi Fi I CEV model: σi (Fi ) = σi Fi i β Approximations for local vol baskets · November 29, 2014 · Page 6 (30) Setting I Local volatility model for forward prices dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n, D E dWi (t) , dW j (t) = ρi j dt P n + − K , at least I Generalized spread option with payoff one wi positive I Goal: fast and accurate approximation formulas, even for high n I n = 100 or n = 500 not uncommon (index options) i=1 wi F i Example I Black-Scholes model: σi (Fi ) = σi Fi I CEV model: σi (Fi ) = σi Fi i β Approximations for local vol baskets · November 29, 2014 · Page 6 (30) Setting I Local volatility model for forward prices dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n, D E dWi (t) , dW j (t) = ρi j dt P n + − K , at least I Generalized spread option with payoff one wi positive I Goal: fast and accurate approximation formulas, even for high n I n = 100 or n = 500 not uncommon (index options) i=1 wi F i Example I Black-Scholes model: σi (Fi ) = σi Fi I CEV model: σi (Fi ) = σi Fi i β Approximations for local vol baskets · November 29, 2014 · Page 6 (30) Basket Carr-Jarrow formula I Consider the basket (index) d n X i=1 Pn wi Fi (t) = i=1 wi F i : n X wi σi (Fi (t))dWi (t) i=1 I Ito’s formula formally implies that I Let Hn−1 be the Hausdorff measure on E(K) Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula Pn I Consider the basket (index) I Ito’s formula formally implies that i=1 wi F i . + + n n X X wi Fi (t) − K = wi Fi (0) − K + i=1 i=1 + n X i=1 I T Z 1P wi 0 1 wi Fi (u)>K dF i (u) + 2 T Z 0 δP wi Fi (u)=K σ2N,B (F(u))du Let Hn−1 be the Hausdorff measure on E(K) Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula Pn I Consider the basket (index) I Ito’s formula formally implies with E(K) = {F| i=1 wi F i . P wi Fi = K} that + n i X 1 Z T h 2 E σN,B (F(u))δE(K) (F(u)) du C(F(0), K, T ) = wi Fi (0) − K + 2 0 i=1 I Let Hn−1 be the Hausdorff measure on E(K) Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula Pn I Consider the basket (index) I Ito’s formula formally implies with E(K) = {F| i=1 wi F i . P wi Fi = K} that + n X C(F(0), K, T ) = wi Fi (0) − K i=1 1 + 2 I T Z 0 Z Rn σ2N,B (F)δE(K) (F)p(F0 , F, u)dFdu Let Hn−1 be the Hausdorff measure on E(K) Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula Pn I Consider the basket (index) I Ito’s formula formally implies with E(K) = {F| P v(F) B i wi Fi that i=1 wi F i . P wi Fi = K} and + n X C(F(0), K, T ) = wi Fi (0) − K i=1 + I 1 2 |w| Z 0 T Z Rn |∇v(F)| σ2N,B (F)δ0 (v(F) − K)p(F0 , F, u)dFdu Let Hn−1 be the Hausdorff measure on E(K) Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula Pn I Consider the basket (index) i=1 wi F i . I Ito’s formula formally implies with E(K) = {F| P v(F) B i wi Fi that P wi Fi = K} and + n X C(F(0), K, T ) = wi Fi (0) − K i=1 + I 1 2 |w| Z 0 T Z Rn |∇v(F)| σ2N,B (F)δ0 (v(F) − K)p(F0 , F, u)dFdu Let Hn−1 be the Hausdorff measure on E(K). Recall the co-area formula: Z Ω |∇v(x)|g(x)dx = Z ∞ −∞ Z v−1 ({s}) g(x)Hn−1 (dx)ds Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula I I Consider the basket (index) ni=1 wi Fi . P Ito’s formula formally implies with E(K) = {F| wi Fi = K} that P + n X C(F(0), K, T ) = wi Fi (0) − K i=1 + I 1 2 |w| T Z 0 Z Rn |∇v(F)| σ2N,B (F)δ0 (v(F) − K)p(F0 , F, u)dFdu Let Hn−1 be the Hausdorff measure on E(K) , then we have the Carr-Jarrow formula n + X CB (F0 , K, T ) = wi Fi (0) − K + i=1 1 + 2|w| Z 0 T Z ∞ δ0 (s − K) −∞ Z Es σ2N,B (F)p(F0 , F, t)Hn−1 (dF)dsdt Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Basket Carr-Jarrow formula I I Consider the basket (index) ni=1 wi Fi . P Ito’s formula formally implies with E(K) = {F| wi Fi = K} that P + n X C(F(0), K, T ) = wi Fi (0) − K i=1 + I 1 2 |w| Z 0 T Z Rn |∇v(F)| σ2N,B (F)δ0 (v(F) − K)p(F0 , F, u)dFdu Let Hn−1 be the Hausdorff measure on E(K) , then we have the Carr-Jarrow formula n + X C(F0 , K, T ) = wi Fi (0) − K + 1 + 2 T Z 0 1 |w| Z i=1 n X wi w j σi (Fi )σ j (F j )ρi j p(F0 , F, u)Hn−1 (dF)du. E(K) i, j=1 Approximations for local vol baskets · November 29, 2014 · Page 7 (30) Approximations I Heat kernel expansion (to be discussed in detail later): 1 d(F0 , F)2 ≈ exp − − C(F0 , F) 2t (2πt)n/2 P By change of variables Fn = w1n K − n−1 i=1 wi F i on EK : ! σ2N,B (F)p(F0 , F, t) I |w| dF1 · · · dFn−1 |wn | Laplace approximation: with F∗ = argminF∈EK d(F0 , F) and P GK = {(F1 , . . . , Fn−1 )| n−1 i=1 wi F i < K} Z Z d(F ,F)2 d(F ,F∗ )2 zT Qz − 02t −C(F0 ,F) − 02t −C(F0 ,F∗ ) e dF1 · · · dFn−1 ≈ e e− 2t dz Hn−1 (dF) = I Rn−1 GK =t n−1 2 e − d(F0 ,F∗ )2 −C(F0 ,F∗ ) 2t We rely on the principle of not feeling the boundary. Approximations for local vol baskets · November 29, 2014 · Page 8 (30) n−1 (2π) 2 √ det Q Approximations I Heat kernel expansion (to be discussed in detail later): 1 d(F0 , F)2 ≈ exp − − C(F0 , F) 2t (2πt)n/2 P By change of variables Fn = w1n K − n−1 i=1 wi F i on EK : ! σ2N,B (F)p(F0 , F, t) I |w| dF1 · · · dFn−1 |wn | Laplace approximation: with F∗ = argminF∈EK d(F0 , F) and P GK = {(F1 , . . . , Fn−1 )| n−1 i=1 wi F i < K} Z Z d(F ,F)2 d(F ,F∗ )2 zT Qz − 02t −C(F0 ,F) − 02t −C(F0 ,F∗ ) e dF1 · · · dFn−1 ≈ e e− 2t dz Hn−1 (dF) = I Rn−1 GK =t n−1 2 e − d(F0 ,F∗ )2 −C(F0 ,F∗ ) 2t We rely on the principle of not feeling the boundary. Approximations for local vol baskets · November 29, 2014 · Page 8 (30) n−1 (2π) 2 √ det Q Approximations I Heat kernel expansion (to be discussed in detail later): 1 d(F0 , F)2 ≈ exp − − C(F0 , F) 2t (2πt)n/2 P By change of variables Fn = w1n K − n−1 i=1 wi F i on EK : ! σ2N,B (F)p(F0 , F, t) I |w| dF1 · · · dFn−1 |wn | Laplace approximation: with F∗ = argminF∈EK d(F0 , F) and P GK = {(F1 , . . . , Fn−1 )| n−1 i=1 wi F i < K} Z Z d(F ,F)2 d(F ,F∗ )2 zT Qz − 02t −C(F0 ,F) − 02t −C(F0 ,F∗ ) e dF1 · · · dFn−1 ≈ e e− 2t dz Hn−1 (dF) = I Rn−1 GK =t n−1 2 e − d(F0 ,F∗ )2 −C(F0 ,F∗ ) 2t We rely on the principle of not feeling the boundary. Approximations for local vol baskets · November 29, 2014 · Page 8 (30) n−1 (2π) 2 √ det Q Non-degeneracy of the optimization problem I Assume non-degeneracy of F∗ = argminF∈EK d(F0 , F) I Generically true, but exceptional points F0 or K often exist. I Approximations for local vol baskets · November 29, 2014 · Page 9 (30) Non-degeneracy of the optimization problem I Assume non-degeneracy of F∗ = argminF∈EK d(F0 , F) I Generically true, but exceptional points F0 or K often exist. I Example: F1 , F2 independent, Black-Scholes assets, σi = 1, F0,i = 1, f . . . density of F1,T + F2,T . Then Λ(K) 1 exp − T √T (c0 + O (T )) , K , 2e, f (K) = ∗) 1 exp − Λ(K (c0 + O (T )) , K = 2e. T T 3/4 Approximations for local vol baskets · November 29, 2014 · Page 9 (30) Non-degeneracy of the optimization problem I I −1 0 1 2 I Assume non-degeneracy of F∗ = argminF∈EK d(F0 , F) Generically true, but exceptional points F0 or K often exist. Related concept of focality in Riemannian geometry. −2 F Focal points Opt. config. −2 −1 0 1 Approximations for local vol baskets · November 29, 2014 · Page 9 (30) 2 Matching to implied volatilities Theorem + n X CB (F0 , K, T ) = wi Fi (0) − K + i=1 1 + √ e−C(F0 ,F √ ∗ 2 2 2π |wn | d(F0 , F ) det Q I ∗ ∗ )− d(F0 ,F ) 2T Bachelier implied vol (with F 0 = Pn σB ∼ σB,0 + T σB,1 with σB,0 I T 3/2 +o(T 3/2 ), as T → 0. i=1 wi F 0,i ): F 0 − K , σB,1 = · · · = d(F0 , F∗ ) F 0 Black-Scholes implied vol: σBS ∼ σBS ,0 + T σBS ,1 with σBS ,0 = log F 0 /K d(F0 , F∗ ) Approximations for local vol baskets · November 29, 2014 · Page 10 (30) , σBS ,1 = · · · Matching to implied volatilities Theorem + n X CB (F0 , K, T ) = wi Fi (0) − K + i=1 1 + √ e−C(F0 ,F √ ∗ 2 2 2π |wn | d(F0 , F ) det Q I ∗ ∗ )− d(F0 ,F ) 2T Bachelier implied vol (with F 0 = Pn σB ∼ σB,0 + T σB,1 with σB,0 I T 3/2 +o(T 3/2 ), as T → 0. i=1 wi F 0,i ): F 0 − K , σB,1 = · · · = d(F0 , F∗ ) F 0 Black-Scholes implied vol: σBS ∼ σBS ,0 + T σBS ,1 with σBS ,0 = log F 0 /K d(F0 , F∗ ) Approximations for local vol baskets · November 29, 2014 · Page 10 (30) , σBS ,1 = · · · Matching to implied volatilities Theorem + n X CB (F0 , K, T ) = wi Fi (0) − K + i=1 1 + √ e−C(F0 ,F √ ∗ 2 2 2π |wn | d(F0 , F ) det Q I ∗ ∗ )− d(F0 ,F ) 2T Bachelier implied vol (with F 0 = Pn σB ∼ σB,0 + T σB,1 with σB,0 I T 3/2 +o(T 3/2 ), as T → 0. i=1 wi F 0,i ): F 0 − K , σB,1 = · · · = d(F0 , F∗ ) F 0 Black-Scholes implied vol: σBS ∼ σBS ,0 + T σBS ,1 with σBS ,0 = log F 0 /K d(F0 , F∗ ) Approximations for local vol baskets · November 29, 2014 · Page 10 (30) , σBS ,1 = · · · The ATM case I Above formulas have singularities when F 0 = K (ATM) I Resolve by l’Hopital formula or first order heat kernel expansion. I We have F∗ = F0 and det Q = σ2N,B (F0 ) det ρ−1 n Y σk (F0,k )−2 /w2n . k=1 I Higher order Laplace exansion required. I σBS ,0 = σBach,0 = I σBS ,1 σN,B (F0 ) F0 √ σ3BS ,0 σ3BS ,0 2π ū0 ū1 g1 + g0 + = = σBach,1 + 3K 24 24 Approximations for local vol baskets · November 29, 2014 · Page 11 (30) The ATM case I Above formulas have singularities when F 0 = K (ATM) I Resolve by l’Hopital formula or first order heat kernel expansion. I We have F∗ = F0 and det Q = σ2N,B (F0 ) det ρ−1 n Y σk (F0,k )−2 /w2n . k=1 I Higher order Laplace exansion required. I σBS ,0 = σBach,0 = I σBS ,1 σN,B (F0 ) F0 √ σ3BS ,0 σ3BS ,0 2π ū0 ū1 g1 + g0 + = = σBach,1 + 3K 24 24 Approximations for local vol baskets · November 29, 2014 · Page 11 (30) The ATM case I Above formulas have singularities when F 0 = K (ATM) I Resolve by l’Hopital formula or first order heat kernel expansion. I We have F∗ = F0 and det Q = σ2N,B (F0 ) det ρ−1 n Y σk (F0,k )−2 /w2n . k=1 I Higher order Laplace exansion required. I σBS ,0 = σBach,0 = I σBS ,1 σN,B (F0 ) F0 √ σ3BS ,0 σ3BS ,0 2π ū0 ū1 g1 + g0 + = = σBach,1 + 3K 24 24 Approximations for local vol baskets · November 29, 2014 · Page 11 (30) Greeks I Goal: sensitivity w. r. t. model parameter κ of the option price CB (F0 , K, T ) ≈ C BS (F 0 , K, σBS , T ) I Sensitivity: ∂κ C BS (F 0 , K, σBS , T ) + |{z} νBS (F 0 , K, σBS , T )∂κ σBS |{z} BS greek BS vega I Recall that σBS ,0 , σBS ,1 explicit up to F∗ I By the minimizing property: ∂Fi d2 (F0 , FK (G))G=G∗ = 0 I Differentiating with respect to κ gives n−1 X ∂κ ∂Fi d2 (F0 , FK (G))G∗ + ∂Fl ∂Fi d2 (F0 , FK (G))G∗ ∂κ Fl∗ = 0 l=1 Up to the above system of linear equations for ∂κ F∗ , there are explicit expression for the sensitivities of the approximate option prices. Approximations for local vol baskets · November 29, 2014 · Page 12 (30) Greeks I Goal: sensitivity w. r. t. model parameter κ of the option price CB (F0 , K, T ) ≈ C BS (F 0 , K, σBS , T ) I Sensitivity: ∂κ C BS (F 0 , K, σBS , T ) + νBS (F 0 , K, σBS , T )∂κ σBS I Recall that σBS ,0 , σBS ,1 explicit up to F∗ I By the minimizing property: ∂Fi d2 (F0 , FK (G))G=G∗ = 0 I Differentiating with respect to κ gives n−1 X ∂κ ∂Fi d2 (F0 , FK (G))G∗ + ∂Fl ∂Fi d2 (F0 , FK (G))G∗ ∂κ Fl∗ = 0 l=1 Up to the above system of linear equations for ∂κ F∗ , there are explicit expression for the sensitivities of the approximate option prices. Approximations for local vol baskets · November 29, 2014 · Page 12 (30) Outline 1 Introduction 2 Outline of our approach 3 Heat kernel expansions 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 13 (30) Heat kernels and geometry dXt = b(Xt )dt + σ(Xt )dWt , ∂2 1 ∂ L = ai, j i j + bi i , 2 ∂x ∂x ∂x I I a = σT σ Heat kernel: fundamental solution p(x, y, t) of Transition density of Xt ∂ ∂t u = Lu "Can you hear the shape of the drum?"(Kac ’66) Take L = ∆ on a domain D and relate: I Geometrical properties of the domain D I Partition function Z = I Heat kernel I E.g. −γk ∼ C(n)(k/ vol D)2/n (Weyl, ’46) I E.g. (for n = 2): Z = P k∈N e area 4πt − γk t circ. √ 4πt + O(1) (McKean & Singer, ’67) Approximations for local vol baskets · November 29, 2014 · Page 14 (30) Heat kernels and geometry dXt = b(Xt )dt + σ(Xt )dWt , ∂2 1 ∂ L = ai, j i j + bi i , 2 ∂x ∂x ∂x I I a = σT σ Heat kernel: fundamental solution p(x, y, t) of Transition density of Xt ∂ ∂t u = Lu "Can you hear the shape of the drum?"(Kac ’66) Take L = ∆ on a domain D and relate: I Geometrical properties of the domain D I Partition function Z = I Heat kernel I E.g. −γk ∼ C(n)(k/ vol D)2/n (Weyl, ’46) I E.g. (for n = 2): Z = P k∈N e area 4πt − γk t circ. √ 4πt + O(1) (McKean & Singer, ’67) Approximations for local vol baskets · November 29, 2014 · Page 14 (30) Heat kernels and geometry dXt = b(Xt )dt + σ(Xt )dWt , ∂2 1 ∂ L = ai, j i j + bi i , 2 ∂x ∂x ∂x I I a = σT σ Heat kernel: fundamental solution p(x, y, t) of Transition density of Xt ∂ ∂t u = Lu "Can you hear the shape of the drum?"(Kac ’66) Take L = ∆ on a domain D and relate: I Geometrical properties of the domain D I Partition function Z = I Heat kernel I E.g. −γk ∼ C(n)(k/ vol D)2/n (Weyl, ’46) I E.g. (for n = 2): Z = P k∈N e area 4πt − γk t circ. √ 4πt + O(1) (McKean & Singer, ’67) Approximations for local vol baskets · November 29, 2014 · Page 14 (30) The Riemannian metric associated to a diffusion dXt = b(Xt )dt + σ(Xt )dWt , ∂2 ∂ 1 L = ai j i j + bi i , 2 ∂x ∂x ∂x I On Rn (or a submanifold), introduce gi j B ai j , Riemannian metric tensor (gi j (x))ni, j=1 B (gi j (x))ni, j=1 I Geodesic distance: Z d(x, y) B I I a = σT σ 1 inf z(0)=x, z(1)=y qX −1 gi j (z(t))żi (t)ż j (t)dt 0 inf attained by a smooth curve, the geodesic − 1 1 Laplace-Beltrami operator: ∆g = det(gi j ) 2 ∂x∂ i det(gi j ) 2 gi j ∂x∂ j 1 ∂2 ∂ 1 ∂ L = ai j i j + bi i = ∆g + hi i 2 ∂x ∂x 2 ∂x ∂x Approximations for local vol baskets · November 29, 2014 · Page 15 (30) The Riemannian metric associated to a diffusion dXt = b(Xt )dt + σ(Xt )dWt , ∂2 ∂ 1 L = ai j i j + bi i , 2 ∂x ∂x ∂x I On Rn (or a submanifold), introduce gi j B ai j , Riemannian metric tensor (gi j (x))ni, j=1 B (gi j (x))ni, j=1 I Geodesic distance: Z d(x, y) B I I a = σT σ 1 inf z(0)=x, z(1)=y qX −1 gi j (z(t))żi (t)ż j (t)dt 0 inf attained by a smooth curve, the geodesic − 1 1 Laplace-Beltrami operator: ∆g = det(gi j ) 2 ∂x∂ i det(gi j ) 2 gi j ∂x∂ j 1 ∂2 ∂ 1 ∂ L = ai j i j + bi i = ∆g + hi i 2 ∂x ∂x 2 ∂x ∂x Approximations for local vol baskets · November 29, 2014 · Page 15 (30) The Riemannian metric associated to a diffusion dXt = b(Xt )dt + σ(Xt )dWt , ∂2 ∂ 1 L = ai j i j + bi i , 2 ∂x ∂x ∂x I On Rn (or a submanifold), introduce gi j B ai j , Riemannian metric tensor (gi j (x))ni, j=1 B (gi j (x))ni, j=1 I Geodesic distance: Z d(x, y) B I I a = σT σ 1 inf z(0)=x, z(1)=y qX −1 gi j (z(t))żi (t)ż j (t)dt 0 inf attained by a smooth curve, the geodesic − 1 1 Laplace-Beltrami operator: ∆g = det(gi j ) 2 ∂x∂ i det(gi j ) 2 gi j ∂x∂ j 1 ∂2 ∂ 1 ∂ L = ai j i j + bi i = ∆g + hi i 2 ∂x ∂x 2 ∂x ∂x Approximations for local vol baskets · November 29, 2014 · Page 15 (30) Heat kernel expansion 2 d (x0 , x) q e− 2T pN (x0 , x, T ) = det(g(x)i j )U N (x0 , x, T ) n (2πT ) 2 I I I PN U N (x0 , x, T ) = k=0 uk (x0 , x)T k , the heat kernel coefficients R √ u0 (x0 , x) = ∆(x0 , x)e z hh(z(t)) , ż(t)ig dt ∆ is the Van Vleck-DeWitt determinant: ∂2 d2 1 det − 12 ∂x . ∆(x0 , x) = √ 0 ∂x det(g(x0 )i j ) det(g(x)i j ) e z hh(z(t)) , ż(t)ig dt is the exponential of the work done by the vector field h along the geodesic h p z joiningi x0 to x with ∂ 1 i i det(gi j )gi j h =b − √ ∂x j R I 2 det(gi j ) Approximations for local vol baskets · November 29, 2014 · Page 16 (30) Heat kernel expansion 2 d (x0 , x) q e− 2T pN (x0 , x, T ) = det(g(x)i j )U N (x0 , x, T ) n (2πT ) 2 I I I PN U N (x0 , x, T ) = k=0 uk (x0 , x)T k , the heat kernel coefficients R √ u0 (x0 , x) = ∆(x0 , x)e z hh(z(t)) , ż(t)ig dt ∆ is the Van Vleck-DeWitt determinant: 1 ∂2 d2 ∆(x0 , x) = √ det − 12 ∂x . 0 ∂x det(g(x0 )i j ) det(g(x)i j ) e z hh(z(t)) , ż(t)ig dt is the exponential of the work done by the vector field h along the geodesic h p z joiningi x0 to x with ∂ 1 i i h =b − √ det(gi j )gi j ∂x j R I 2 det(gi j ) Approximations for local vol baskets · November 29, 2014 · Page 16 (30) Heat kernel expansion – 2 Assumption The cut-locus of any point is empty, Theorem (Varadhan ’67) b = 0, σ uniformly Hölder continuous, system uniformly elliptic, then limT →0 T log p(x, y, T ) = − 12 d(x, y)2 . Theorem (Yosida ’53) On a compact Riemannian manifold, assume smooth vector fields and an ellipticity property. Then p(x, y, T ) − pN (x, y, T ) = O(T N ) as T → 0. Theorem (Azencott ’84) For a locally elliptic system in an open set U ⊂ Rn , x, y ∈ U s. t. d(x, y) < d(x, ∂U) + d(y, ∂U), we have p(x, y, T ) − pN (x, y, T ) = O(T N ) as T → 0. Approximations for local vol baskets · November 29, 2014 · Page 17 (30) The local vol case I Domain Rn+ , dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n ∂2 I L = 12 ρi j σi (xi )σ j (x j ) ∂xi ∂x j I Let A ∈ Rn×n be such that AρAT = In . Change variables F → y → x according to yi = Fi Z 0 I du , i = 1, . . . , n, σi (u) x = Ay, L→ 1 ∂2 1 ∂ − Aik σ0k (Fk ) 2 2 ∂xi 2 ∂xi Isomorphic (up to boundary) to Euclidean geometry: d(F0 , F) = |x0 − x| I Geodesics known in closed form I CEV case: σi (Fi ) = σi Fi i , zeroth and first order heat kernel coefficients given explicitly β Approximations for local vol baskets · November 29, 2014 · Page 18 (30) The local vol case I Domain Rn+ , dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n ∂2 I L = 12 ρi j σi (xi )σ j (x j ) ∂xi ∂x j I Let A ∈ Rn×n be such that AρAT = In . Change variables F → y → x according to yi = Fi Z 0 I du , i = 1, . . . , n, σi (u) x = Ay, L→ 1 ∂2 1 ∂ − Aik σ0k (Fk ) 2 2 ∂xi 2 ∂xi Isomorphic (up to boundary) to Euclidean geometry: d(F0 , F) = |x0 − x| I Geodesics known in closed form I CEV case: σi (Fi ) = σi Fi i , zeroth and first order heat kernel coefficients given explicitly β Approximations for local vol baskets · November 29, 2014 · Page 18 (30) The local vol case I Domain Rn+ , dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n ∂2 I L = 12 ρi j σi (xi )σ j (x j ) ∂xi ∂x j I Let A ∈ Rn×n be such that AρAT = In . Change variables F → y → x according to yi = Fi Z 0 I du , i = 1, . . . , n, σi (u) x = Ay, L→ 1 ∂2 1 ∂ − Aik σ0k (Fk ) 2 2 ∂xi 2 ∂xi Isomorphic (up to boundary) to Euclidean geometry: d(F0 , F) = |x0 − x| I Geodesics known in closed form I CEV case: σi (Fi ) = σi Fi i , zeroth and first order heat kernel coefficients given explicitly β Approximations for local vol baskets · November 29, 2014 · Page 18 (30) The local vol case I Domain Rn+ , dFi (t) = σi (Fi (t))dWi (t), i = 1, . . . , n ∂2 I L = 12 ρi j σi (xi )σ j (x j ) ∂xi ∂x j I Let A ∈ Rn×n be such that AρAT = In . Change variables F → y → x according to yi = Fi Z 0 I du , i = 1, . . . , n, σi (u) x = Ay, L→ 1 ∂2 1 ∂ − Aik σ0k (Fk ) 2 2 ∂xi 2 ∂xi Isomorphic (up to boundary) to Euclidean geometry: d(F0 , F) = |x0 − x| I Geodesics known in closed form I CEV case: σi (Fi ) = σi Fi i , zeroth and first order heat kernel coefficients given explicitly β Approximations for local vol baskets · November 29, 2014 · Page 18 (30) Outline 1 Introduction 2 Outline of our approach 3 Heat kernel expansions 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 19 (30) Implementation I Optimization problem for F∗ is non-linear with a linear constraint I , it is a quadratic optimization problem with With qi B F σdu i (u) 0,i non-linear constraint I Fast convergence of Newton iteration for suitable initial guess I Given F∗ , C(F0 , F∗ ) is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model. I Formulas can be evaluated in less than 2 seconds for n = 100 R Fi Our work relies on the principle of not feeling the boundary and on non-degeneracy of the minimization problem. Approximations for local vol baskets · November 29, 2014 · Page 20 (30) Implementation I Optimization problem for F∗ is non-linear with a linear constraint I , it is a quadratic optimization problem with With qi B F σdu i (u) 0,i non-linear constraint I Fast convergence of Newton iteration for suitable initial guess I Given F∗ , C(F0 , F∗ ) is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model. I Formulas can be evaluated in less than 2 seconds for n = 100 R Fi Our work relies on the principle of not feeling the boundary and on non-degeneracy of the minimization problem. Approximations for local vol baskets · November 29, 2014 · Page 20 (30) Implementation I Optimization problem for F∗ is non-linear with a linear constraint I , it is a quadratic optimization problem with With qi B F σdu i (u) 0,i non-linear constraint I Fast convergence of Newton iteration for suitable initial guess I Given F∗ , C(F0 , F∗ ) is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model. I Formulas can be evaluated in less than 2 seconds for n = 100 R Fi Our work relies on the principle of not feeling the boundary and on non-degeneracy of the minimization problem. Approximations for local vol baskets · November 29, 2014 · Page 20 (30) Implementation I Optimization problem for F∗ is non-linear with a linear constraint I , it is a quadratic optimization problem with With qi B F σdu i (u) 0,i non-linear constraint I Fast convergence of Newton iteration for suitable initial guess I Given F∗ , C(F0 , F∗ ) is a line integral along the geodesic; this integral can be calculated in closed form in the CEV model. I Formulas can be evaluated in less than 2 seconds for n = 100 R Fi Our work relies on the principle of not feeling the boundary and on non-degeneracy of the minimization problem. Approximations for local vol baskets · November 29, 2014 · Page 20 (30) Numerical examples I CEV model framework I For CEV, the formulas are fully explicit apart from the minimizing configuration F∗ I We observe very fast convergence of the iteration, but the initial guess is crucial. I Reference values obtained using: I I I Ninomiya Victoir discretization Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions (n ≈ 100) Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices Approximations for local vol baskets · November 29, 2014 · Page 21 (30) Numerical examples I CEV model framework I For CEV, the formulas are fully explicit apart from the minimizing configuration F∗ I We observe very fast convergence of the iteration, but the initial guess is crucial. I Reference values obtained using: I I I Ninomiya Victoir discretization Quasi Monte Carlo based on Sobol numbers, Monte Carlo for very high dimensions (n ≈ 100) Variance (dimension) reduction using Mean value Monte Carlo based on one-dimensional Black-Scholes prices Approximations for local vol baskets · November 29, 2014 · Page 21 (30) CEV index implied vol – three-dimensional visualization 0.25 0.20 0.15 Implied vol Basket St. 1 (F0 = 10, β = 0.3, σ = 0.9) St. 2 (F0 = 11, β = 0.2, σ = 0.7) St. 3 (F0 = 17, β = 0.2, σ = 0.9) ● ● ● ● 0.10 ● −0.6 −0.4 ● ● −0.2 ● ● ● 0.0 ● 0.2 log(K F0) Approximations for local vol baskets · November 29, 2014 · Page 22 (30) ● ● 0.4 ● ● 0.6 ● 25 20 15 10 St. 1 (F0 = 10, β = 0.3, σ = 0.9) St. 2 (F0 = 11, β = 0.2, σ = 0.7) St. 3 (F0 = 17, β = 0.2, σ = 0.9) 5 Optimal component strike 30 CEV index implied vol – three-dimensional visualization 20 30 40 50 Basket strike Approximations for local vol baskets · November 29, 2014 · Page 22 (30) 60 70 Normalized errors I I I Approximation error supposed to depend on “dimension-free” time to maturity σ2 T P Use σ B σN,B (F0 )/ ni=1 wi F0,i as proxy in local vol framework Normalized error: Rel. 2error σ T T 0.5 1 2 5 10 σ Dim. 5 Dim. 10 Dim. 15 Dim. 100 0.1555 0.1481 0.1429 0.1376 0.1328 0.1704 −0.0293 −0.0261 −0.0218 −0.0129 −0.0035 0.3187 0.3085 0.3162 0.3222 0.3252 0.3198 0.1073 −0.0143 −0.0105 −0.0075 0.2964 Table: Normalized relative error of the zero-order asymptotic prices. Approximations for local vol baskets · November 29, 2014 · Page 23 (30) Normalized errors I I I Approximation error supposed to depend on “dimension-free” time to maturity σ2 T P Use σ B σN,B (F0 )/ ni=1 wi F0,i as proxy in local vol framework Normalized error: Rel. 2error σ T T 0.5 1 2 5 10 σ Dim. 5 Dim. 10 Dim. 15 Dim. 100 −4.02 × 10−4 −9.47 × 10−4 −1.63 × 10−3 −3.41 × 10−3 −7.15 × 10−3 0.1704 1.76 × 10−4 3.58 × 10−3 8.09 × 10−3 1.71 × 10−2 2.67 × 10−2 0.3187 8.76 × 10−3 1.53 × 10−3 −3.92 × 10−3 −1.33 × 10−2 −2.82 × 10−2 0.1073 5.06 × 10−5 2.08 × 10−3 3.89 × 10−3 0.2964 Table: Normalized error of the first order asymptotic prices. Approximations for local vol baskets · November 29, 2014 · Page 23 (30) First order prices 15 ● ● 10 ● Price ● T = 0.5 T=1 T=2 T=5 T = 10 5 ● ● ● ● 0 ● 15 20 25 30 35 Strike Approximations for local vol baskets · November 29, 2014 · Page 24 (30) ● ● 40 ● 45 ● 1e−02 ● ● ● ● ● ● ● ● 1e−04 ● ● ● ● ● ● ● 1e−06 Relative error of price Relative errors Zeroth order First order ● ● ● ● 15 20 ● ● ● ● 25 30 35 Strike Approximations for local vol baskets · November 29, 2014 · Page 25 (30) 40 45 2e−04 5e−05 ● ● 1e−05 Relative error 1e−03 5e−03 Relative error ATM T = 0.5 T = 1.0 T = 2.0 T = 5.0 T = 10.0 2e−06 ● 20.90 20.95 21.00 21.05 K Approximations for local vol baskets · November 29, 2014 · Page 26 (30) 21.10 Delta 1 0.3 0.1 13 F0 = 9 , ξ = 0.7 , β = 0.7 , w = 1 −1 0.5 0.6 9 1.0000 0.9142 0.7706 ρ = 0.9142 1.0000 0.8429 . 0.7706 0.8429 1.0000 I Objective: Compute the sensitivity (delta) w.r.t.F0,3 . I Note that the option payoff is P(F) = (F1 + F2 − F3 − K)+ Approximations for local vol baskets · November 29, 2014 · Page 27 (30) Delta ● ● ● ● 0.0 T=5 0.0 T = 0.5 −0.2 −0.2 ● ● ● ● ● ● −0.4 −0.4 ● ● ● ● −0.6 ● −1.0 ● ● 6 ● ● 8 MC Delta 0 order Delta 1 order Delta ● 10 12 14 16 18 ● ● 20 ● ● ● −1.0 −0.8 ● −0.8 −0.6 ● MC Delta 0 order Delta 1 order Delta ● 6 8 10 Strike Approximations for local vol baskets · November 29, 2014 · Page 28 (30) 12 14 Strike 16 18 20 Relative error of delta 1e−04 1e−04 1e−02 T=5 1e−02 T = 0.5 6 8 10 12 14 16 18 0 order Delta 1 order Delta 1e−06 1e−06 0 order Delta 1 order Delta 20 6 8 10 Strike Approximations for local vol baskets · November 29, 2014 · Page 29 (30) 12 14 Strike 16 18 20 References M. Avellaneda, D. Boyer-Olson, J. Busca, P. Friz: Application of large deviation methods to the pricing of index options in finance, C. R. Math. Acad. Sci. Paris, 336(3), 2003. R. Azencott: Densité des diffusions en temps petit: développements asymptotiques I, Seminar on probability XVIII, L. N. M. 1059, 1984. C. Bayer, P. Friz, P. Laurence: On the probability density of baskets, Proceedings, 2015. C. Bayer, P. Laurence: Asymptotics beats Monte Carlo: The case of correlated local vol baskets, Comm. Pure Appl. Math., 2014. C. Bayer, P. Laurence: Small time expasions for the ATM implied volatility in multi-dimensional local volatility models, Proceedings, 2015. J. Gatheral, E. P. Hsu, P. Laurence, C. Ouyang, T.-H. Wang: Asymptotics of implied volatility in local volatility models, Math. Fin., 2010. K. Yosida: On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5, 1953. Approximations for local vol baskets · November 29, 2014 · Page 30 (30)