* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 20060906140015001
Compact operator on Hilbert space wikipedia , lookup
Lie algebra extension wikipedia , lookup
History of quantum field theory wikipedia , lookup
Tight binding wikipedia , lookup
Self-adjoint operator wikipedia , lookup
Hidden variable theory wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Density matrix wikipedia , lookup
Canonical quantization wikipedia , lookup
A NONCOMMUTATIVE CLOSED FRIEDMAN WORLD MODEL 1. Introduction 2. Structure of the model 3. Closed Friedman universe – Geometry and matter 4. Singularities 5. Concluding remarks 1. INTRODUCTION Rik 2 Rgik gik Tik 1 GEOMETRY MATTER Mach’s Principle (MP): geometry from matter Wheeler’s Geometrodynamics (WG): matter from (pre)geometry 2 •MP is only partially implemented in Genaral Relativity: matter modifies the space-time structure (Lense-Thirring effect), but •it does not determine it fully ("empty" de Sitter solution), in other words, •SPACE-TIME IS NOT GENERATED BY MATTER 3 For Wheeler pregeometry was "a combination of hope and need, of philosophy and physics and mathematics and logic''. Wheeler made several proposals to make it more concrete. Among others, he explored the idea of propositional logic or elementary bits of information as fundamental building blocks of physical reality. A new possibility: PREGEOEMTRY GEOMETRY NONCOMMUTATIVE 4 References Model: • • • • Gen. Relativ. Gravit. 36, 2004, 111 Gen. Relativ. Gravit. 37, 2005, 541 Int. J. Theor. Phys. 44, 2005, 619. J. Math. Phys. 46, 2005, 122501. Singularities: • Gen. Relativ. Gravit. 31, 1999, 555 • Int. J. Theor. Phys. 42, 2003, 427 5 2. STRUCTURE OF THE MODEL Transformation groupoid: =EG pg E p = (p, g) M p2 Pair groupod: 1=EE = (p1, p2) i 1 are isomorphic p1 6 The algebra: A Cc (, C) with convolution as multiplication: ( f1 f 2 )( ) d ( ) 1 1 f1 ( 1 ) f 2 ( )d 1 Z(A) = {0} "Outer center": Z (C (M )), M : E M * M :ZA A ( f , a)( p, g ) f ( p)a( p, g ) 7 We construct differential geometry in terms of (A, DerA) DerA V = V1 + V2 + V3 V1 – horizontal derivations, lifted from M with the help of connection V2 – vertical derivations, projecting to zero on M V3 – InnA = {ad a: a A} 8 Metric G (u, v) g (u1 , v1 ) k (u2 , v2 ) h(u3 , v3 ) g - lifting of the metric g from M k : V2 V2 Z h : V3 V3 Z The latter two are assumed to be of the Killing type. 9 3. CLOSED FRIEDMAN UNIVERSE – GEOMETRY AND MATTER M ( , , , ) : (0, T ), , , S 3 Metric: (0, T ) S 3 ds 2 R 2 ( )(d 2 d 2 sin 2 (d 2 sin 2 d 2 )) Total space of the frame bundle: E (, , ,, ) :, , , M , R M R Structural group: cosh t sinh t sinh t cosh t G 0 0 0 0 0 0 0 0 0 0 , t R 0 0 10 Groupoid: (, , ,, 1, 2 ) : 1, 2 R Algebra: A Cc (, C) (a b)(, , ,, 1, 2 ) a(, , ,, 1, )b(, , ,, , 2 )d R "Outer center": Z a(, ) :, M 11 Metric on V = V1V2: ds 2 R 2 ( )d 2 R 2 ( )d 2 R 2 ( ) sin 2 d 2 R ( ) sin sin d d 2 2 2 2 Einstein operator G: V V 1 R'2 ( ) B 3( 2 4 ) R ( ) R ( ) 2 B 0 c Gd 0 0 0 0 0 0 0 h 0 0 0 0 h 0 0 0 0 h 0 0 0 0 q 1 R'2 ( ) R' ' ( ) h 2 4 2 3 R ( ) R ( ) R ( ) 1 R' ' ( ) q 3( 2 3 ) R ( ) R ( ) 12 Einstein equation: G(u)= u, uV B 0 0 0 0 0 0 0 0 u1 u1 u u h 0 0 0 2 2 0 h 0 0 u3 u3 0 0 h 0 u4 u4 u5 0 0 0 q u5 ( 1 ,..., 5 ) - generalized eigenvalues of G i Z 13 We find i by solving the equation det(G I ) 0 Solutions: Generalized eigenvalues: Eigenspaces: 1 R'2 (t ) B 3( 2 4 ) R (t ) R (t ) WB – 1-dimensional 1 R'2 (t ) R' ' (t ) h 2 4 2 3 R (t ) R (t ) R (t ) Wh – 3-diensional q 3( 1 R' ' (t ) ) 2 3 R (t ) R (t ) Wq – 1-dimensional 14 By comparing B and h with the components of the perfect fluid enery-momentum tenor for the Friedman model, we find B 8G ( ) h 8 Gp( ) c=1 We denote T00 B / 8 G Tki ( h / 8 G ) p( ) ki i, k 1,2,3 In this way, we obtain components of the energy-momentum tensor as generalized eigenvalues of Einstein operator. 15 What about q? 1 3 q B h 2 2 4 G ( (t ) 3 p(t )) This equation encodes equation of state: q 4 G - dust q 0 - radiation 16 4. SINGULARITIES Schmidt's b-boundary 17 Quantum sector of the model: p : A Bound ( H p ) - regular representation by p (a)( )( ) a( 1 ) ( 1 )d 1 1 p p E, , H p L2 ( p ) Every a A generates a random operator ra on (Hp)pE 18 Random operator is a family of operators r = (rp)pE, i.e. a function r : E Bound ( H p ) pe such that (1) the function r is measurable: if p , p H p then the function E p (r ( p) p , p ) C is measurable with respect to the manifold measure on E. (2) r is bounded with respect to the norm ||r|| = ess sup ||r(p)|| where ess sup means "supremum modulo zer measure sets". In our case, both these conditions are satisfied. 19 N0 – the algebra of equivqlence classes (modulo equality everywhere) of bounded random operators ra, a A. N = N0'' – von Neumann algebra, called von Neumann algebra of the groupoid . In the case of the closed Friedman model N L (M , Bound ( L2 ( R)) Normal states on N (restricted to N0) are ( A) a(, , , ) (, , , )d, d , d , d 1 2 1 2 1 2 M R R A ( p (a)) pE - density function which is integrable, positive, normalized; to be faithful it must satisfy the condition >0. 20 We are considering the model M [0, T ] S 1 Let 0 or 0. Since is integrable, (A) is well defined for every a on the domain M R R i.e. the functional (A) does not feel singularities. Tomita-Takesaki theorem there exists the 1-parameter group of automotphisms of the algebra N t (ra ( p)) e itH p ra ( p)e itH p A. Connes, C. Rovelli, Class. Quantum Grav.11, 1994, 2899. which describes the (state dependent) evolution of random opertors with the Hamiltonian H p Log ( p) This dynamics does not feel singularities. 21 5. CONCLUDING REMARKS Our noncommutative closed Friedman world model is a toy model. It is intended to show how concepts can interact with each other in the framework of noncommutative geometry rather than to study the real world. Two such interactions of concepts have been elucidated: 1. Interaction between (pre)geoemtry and matter: components of the energy-momentum tensor can be obtained as generalized eigenvalues of the Einsten operator. 2. Interaction between singular and nonsingular. 22 Usually, two possibilities are considered: either the future quantum gravity theory will remove singularities, or not. Here we have the third possibility: Quantum sector of our model (which we have not explored in this talk) has strong probabilistic properties: all quantum operators are random operators (and the corresponding algebra is a von Neumann algebra). Because of this, on the fundamental level singularities are irrelevant. Singularities appear (together with space, time and multiplicity) when one goes from the noncommutative regime to the usual space-time geometry. 23 This first ever "phase transition" can be visualized as follows c ( A C (, C)) ( Aproj C (M )) By using Schmidt's b-boundary procedure singularities appear as the result of taking ratio M E / G Therefore, on the fundamental level the concept of the beginning and end is meaningeless. Only from the point of view of the macroscopic observer can one say that the universe had an initial singularity in its finite past, and possibly will have a final singularity in its finite future. 24 ? THE END