Download Lecture 5 Entropy

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Black body wikipedia , lookup

Equipartition theorem wikipedia , lookup

Temperature wikipedia , lookup

Adiabatic process wikipedia , lookup

Conservation of energy wikipedia , lookup

Internal energy wikipedia , lookup

Ludwig Boltzmann wikipedia , lookup

History of thermodynamics wikipedia , lookup

Heat transfer physics wikipedia , lookup

Chemical thermodynamics wikipedia , lookup

Non-equilibrium thermodynamics wikipedia , lookup

Entropy wikipedia , lookup

T-symmetry wikipedia , lookup

Gibbs free energy wikipedia , lookup

Thermodynamic system wikipedia , lookup

Second law of thermodynamics wikipedia , lookup

Entropy in thermodynamics and information theory wikipedia , lookup

Maximum entropy thermodynamics wikipedia , lookup

H-theorem wikipedia , lookup

Transcript
Lecture 5
Entropy
James Chou
BCMP201 Spring 2008
Some common definitions of entropy
A measure of the disorder of a system.
A measure of the amount of energy in a system that is available
for doing work; entropy increases as matter and energy in the
universe degrade to an ultimate state of inert uniformity.
Differentiation of Heat (Q), dQ, is not an exact differential and
therefore cannot be integrated. Therefore we introduce an
integration factor (1/T) such that dQ/T can be integrated. And this
dQ/T is called entropy.
Strategies for understanding entropy
The concept of maximum entropy in statistics
Establish the link between statistical entropy and physical
entropy
Use the principle of maximum entropy to explain the energetic
properties of molecules in the nanoworld
An interesting observation
Random distribution of
kinetic energy through
random collisions
Consider velocity in the y direction
#v x2
f (v x ) =
exp 2
2
2"
2!"
1
! 2 = average of (v x " v x )
!=
-Vx
0
Vx
v x2 =
0
2
kB T
m
-Vx
0
Vx
Goal of this lecture:
Use the fundamental principle of maximum entropy to explain the physical
properties of a complex system in equilibrium with the universe.
Maximum Entropy = Minimum Bias
Principle of Maximum-Entropy in Statistics
Given some information or constraints about a random variable, we should choose that
probability distribution for it, which is consistent with the given information, but has otherwise
maximum uncertainty associated with it.
Example: Rolling a die with 6 possible outcomes.
The only constraint we have is
P ( X = 1) + P ( X = 2) + ...+ P ( X = 6) = 1
Without additional information about the die, the most unbiased distribution is such that all
outcomes are equally probable.
P ( X = 1) = P ( X = 2) = ... = P ( X = 6) = 1 6
Shannon’s Measure of Uncertainty
Shannon [1948] suggested the following measure of uncertainty, which is commonly
known as the statistical entropy.
N
H = !" pi ln pi
i=1
1. H is a positive function of p1, p2, …, pn.
2. H = 0 if one outcome has probability of 1.
3. H is maximum when the outcomes are equally likely.
In the case of the die, you will find the maximum entropy to be
6
H = !" pi ln pi = ln6 .
i=1
A quick review on logarithm
log e x = ln x, e = 2.73
ln( AB) = ln A + ln B ,
ln( A / B) = ln A ! ln B ,
d
1
ln( x ) =
dx
x
Stirling approximation: ln ( N!) " N ln N ! N, for very large N
Shannon’s entropy in terms of the number of possible outcomes.
Example: the number of outcomes ! from rolling the die N times:
N!
!=
( Np1 )!( Np2 )!...( Np6 )!
Permutation of N numbers between 1 and 6
Factor out the redundant outcomes
6
ln! = ln N!"# ln(Npi )!
i=1
Using Stirling’s approximation for very large N, ln N!! N ln N " N , ln# becomes
6
6
6
6
i=1
i=1
i=1
i=1
ln# = N ln N " $ Npi ln Npi = N ln N " ln N $ Npi " N $ pi ln pi = "N $ pi ln pi
6
ln ! = "N # pi ln pi = NH
i =1
Conclusion: ln! is linearly proportional to H. Therefore, maximizing the
total number of possible outcomes is equivalent to maximizing Shannon’s
statistical entropy.
# of possible outcomes
Statistical Entropy
H = Const ! ln"
Entropy in Statistical Physics
Definition of physical entropy:
S = const ! ln" ,
" = # of possible microstates of a close system.
A microstate is the detailed state of a physical system.
Example: In an ideal gas, a microstate consists of the position and velocity of every
molecule in the system. So the number of microstates is just what Feynman said: the
number of different ways the inside of the system can be changed without changing the
outside.
Principle of maximum entropy (The second law of thermodynamics)
If a closed system is not in a state of statistical equilibrium, its macroscopic state will
vary in time, until ultimately the system reaches a state of maximum entropy.
Moreover, at equilibrium, all microstates are equally probable.
An example of maximizing entropy:
S = Const x ln (# of Velocity States X # of Position States)
# of velocity states does not change.
# of position states does change
!S = S2 " S1 = Const # [ln$v2 + ln$r2 " ln$1v " ln$1r ]
(
)
!S = Const " ln(2V ) # lnV N = Const " N ln2
N
What is temperature?
Not in Equilibrium
Equilibrium
E2
E1
Picture from hyperphysics.phy-astr.gsu.edu
E = E1 + E 2 = const.
dE1 = !dE 2
S = Const " ln ( #1#2 ) = S1 ( E1 ) + S2 ( E2 )
Maximize S,
dS
dS
dS dE 2 dS1 dS2
= 1+ 2
=
!
=0
dE1 dE1 dE 2 dE1 dE1 dE 2
At equilibrium,
dS1 dS2
=
dE1 dE2
Temperature T is defined as 1 T = dS dE . The temperatures of bodies in equilibrium with
one another are equal.
What is the physical unit of T?
Since T is measured at a fixed number of particles N and volume V, a more stringent
definition is
T = ( dE dS ) N,V .
Thus far, S is defined to be const.! ln(") . If S is a dimension-less quantity, T has the
dimensions of energy (e.g. in units of Joules (J)).
But J is too large a quantity.
Example: Room temperature = 404.34 x 10-23 J !
It is more convenient to measure T in degrees Kelvin (K). The conversion factor between
energy and degree is the Boltzmann’s constant, kB = 1.38 X 10-23 J / K. Hence we redefine
S and T by incorporating the conversion factor.
S = kB ln!
and
T " T / kB .
What does T = ( dE dS ) N ,V mean?
Lower T
3e
2e
e
Higher T
3e
2e
e
! 5! $
S1 = kB ln#
&
" 2!2!%
! 5! $
S2 = kB ln#
&
" 3!2!%
!E !S = e ( k B ln 3)
! 5! $
S1 = kB ln#
&
" 2!2!%
! 5! $
S2 = kB ln#
&
" 3!2!%
!E !S = 3e ( k B ln 3)
Same change in entropy, but more energy is given away by the system initially with higher
T. Hence temperature is a measure of the tendency of an object to spontaneously give up
energy to its surroundings.
Can we derive the equation of state of a gas (PV = nRT) from the
concept of entropy?
Step 1: Evaluate S = kB ln! .
! = !v " !r
!v = # of velocity states
!r = # of position states
One particle
!v " 4 #v 2 , $ is the speed in 3D.
N particles
!v " 4 #v 3N %1 & 4 #v 3N for large N .
Since v " E 1 2 ,
S = kB ln! =
3kB N
ln E + Const.
2
Step 2: Relate kinetic energy E to temperature.
S = kB ln! =
3kB N
ln E + Const.
2
1 dS 3k B N
=
=
T dE
2E
n = # of moles,
"
3
3
E = k B NT = k B ( nN 0 )T
2
2
N0 = 6.02 x 1023 mol-1
R = kBN0 = 8.314 J mol-1 K-1 (Rydberg constant)
Energy of n mole of ideal gas:
Energy of one ideal gas molecule:
3
E = nRT .
2
E=
3
kB T .
2
Step 3: Relate temperature to pressure.
For a particle in a box, each collision with a wall
occurs in a time interval of 2L v x , and change in
momentum (e.g. in x direction), !px is 2mv x .
F=
!px 2mv x
=
= mv x2 L .
!t 2L v x
For N particles in a box,
N
F = " mv x2 i L = Nm v x2 L .
i=1
v x2 + v y2 + v z2
1
3
2
2
2
2
Since P = F L = Nm v x V and E = N m v = N m v x ,
2
2
2
E.
3
3
E
=
nRT , we obtain PV = nRT .
Finally, since
2
we obtain PV =
How do we deal with the enormous complexity of a biological system?
Boltzmann and Gibbs Distribution
Goal: Describe the probability distribution of a molecule of interest, with energy E a , in
equilibrium with a macroscopic thermal reservoir with energy E B .
molecule of interest, a
The second law says that at equilibrium, or
maximum entropy, all microstates are equally
probable, with a probability P0 .
Surrounding, B
In the joint system, the probability of the molecule of interest in a particular state,
E a , is
# SB ( E B ) &
p( E a ) = !B ( E B ) " P0 = exp%
( " P0 .
$ kB '
SB ( E B ) = k B ln(!B ( E B ))
! S (E )$
p( E a ) = exp# B B & ' P0
" kB %
S( E B )
?
Ea
E tot = E B + E a ! E B
EB
E tot
We can use the first-order Taylor’s expansion to approximate SB ( E B ) because E B is very near E tot .
SB ( E B ) ! SB ( E tot ) "
dSB ( E tot )
1
E a = SB ( E tot ) "
Ea
dE B
kB T
Hence we obtain
" S ( E ) % " (E %
" (E %
p( E a ) = P0 ! exp$ B tot ' exp$ a ' = A ! exp$ a '
# k B & # kB T &
# kB T &
Boltzmann Distribution, also known
as the Gibbs Distribution
IMPORTANT: The probability distribution of the molecule of interest in equilibrium with its surrounding
depends only on the temperature of the surrounding.
Now we can explain the velocity distribution at equilibrium using the
Boltzmann distribution
Random distribution of
kinetic energy through
random collisions
" 1 2%
! mv
" !E %
$ 2
'
P = A exp $
=
A
exp
$ kT '
# k BT '&
$# B
'&
"
%
$ !v 2 '
= A exp $
'
k
T
"
%
B
$ 2$
'
# # m '& &
#v x2
f (v x ) =
exp 2
2
2"
2!"
1
!=
v x2 =
kB T
m
Example on rate constant and transition state
k
A !!" B
Transition
state
The reaction rate constant, k [s-1], is
" !E a %
' , where E a is the
RT &
proportional to exp$#
activation energy, or energy barrier, in units of
J mol-1.
Ea
" !E a %
k = Aexp$
'
# RT &
!E
A
B
Arrhenius equation
Suppose Ea of a reaction is 100 kJ mol-1 and a catalyst lowers this to
80 kJ mol-1. Approximately how much faster will the reaction proceed
with the catalyst?
k (catalyzed)
exp(!80 RT )
=
= e 8 " 3000
k (uncatalyzed) exp(!100 RT )
RT ! 2.5 kJ mol-1 at room temperature
High energy barriers result in high specificity in a cellular signaling
pathway.
The role of prion conformational switch in neurodegenerative diseases
k
Catalyzed by either mutation
or binding of PrPSc
!E ++ " 40 kcal mol-1 = 167.4 kJ mol-1
PrPC
PrPSc
What about low energy barrier?
The temperature-gated vanilloid receptor VR1, a pain receptor, is activated by
heat T > 45 °C.
Ea
!E
B
A
It was found experimentally that the probability
of VR1 being in the open state is 0.04 at 40
°C and 0.98 at 50 °C. What is the energy
barrier?
Take home messages
Equilibrium = A system reaching a state of maximum entropy.
Equilibrium = All microstates are equally probable.
S = kB ln!
T = A measure of the tendency of an object to spontaneously give up energy to its
surroundings.
T = ( dE dS ) N,V
The Boltzmann & Gibbs Distribution
# "E &
p( E a ) = A ! exp% a (
$ kB T '