Download PPTX

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 23
Electric Fields
Charles Coulomb




1736 – 1806
French physicist
Major contributions
were in areas of
electrostatics and
magnetism
Also investigated in
areas of



Strengths of materials
Structural mechanics
Ergonomics
Coulomb’s Law


Charles Coulomb measured
the magnitudes of electric
forces between two small
charged spheres
He found the force
depended on the charges
and the distance between
them
Coulomb’s Law, Equation

Mathematically,
q1 q2
Fe  ke
2
r


The SI unit of charge is the coulomb (C)
ke is called the Coulomb constant



ke = 8.9876 x 109 N.m2/C2 = 1/(4πeo)
eo is the permittivity of free space
eo = 8.8542 x 10-12 C2 / N.m2
1/(40 )
Coulomb's Law, Notes

Remember the charges need to be in coulombs





e is the smallest unit of charge
 except quarks
e = 1.6 x 10-19 C
So 1 C needs 6.24 x 1018 electrons or protons
Typical charges can be in the µC range
Remember that force is a vector quantity
Particle Summary
Ex 23.1
수소원자
r=5.3x10-11 m
qp( C )
qe( C )
k( N•m2/C2 )
Fe(N)
1.6x10-19
-1.6x10-19
8.99x109
8.2x10-8
mp( kg )
me( kg )
G( N•m2/C2 ) FG(N)
1.67x10-27 9.11x10-31
6.67x10-11
3.6x10-47
예제 23.1 수소 원자
수소 원자의 전자와 양성자는 평균적으로 대략 5.3 ×10-11m 거리만큼 떨어져 있다. 두
입자 사이에 작용하는 전기력과 중력의 크기를 구하라.
풀이
Fe  ke
Fg  G
e e
r2
19
2
(
1
.
60

10
C
)
8
 (8.99 109 N .m2 / C 2 )

8
.
2

10
N
11
2
(5.3 10 m)
me m p
r2
 (6.67  10
11
 3.6 10  47 N
(9.1110 31 kg)(1.67 10  27 kg)
N .m / kg ) 
(5.3 10 11 m) 2
2
2
Vector Nature of Electric
Forces

In vector form,
q1q2
F12  ke 2 rˆ12
r




  
r12  r2  r1 , r12  r12  r
q1q2
F12  ke 2 rˆ12
r
r̂12 is a unit vector
directed from q1 to q2
The like charges
produce a repulsive
force between them
Use the active figure to
move the charges and
observe the force
PLAY
ACTIVE FIGURE
Superposition Principle,
Example Ex 23.2
q1=q3=5.0μC, q2=-2.0μC
a=0.10m



The force exerted by q1
on q3 is F13 =(7.9ȋ+7.9ĵ)N
The force exerted by q2
on q3 is F23 =(-9.0ȋ)N
The resultant force
exerted on q3 is the
vector sum of F13 and
F23
F3=F13+F23=(-1.1ȋ+7.9ĵ)N
F3
예제 23.2 합력 구하기
삼각형의 꼭지점에 세 개의 전하 q1=q3=5.0nC, q2=-2.0nC이 위치하고 a=0.10m이다.
q3에 작용하는 알짜힘을 구하라.
풀이
F23  k e
q 2 q3
a2
(2.0  10 6 C)(5.0  10 6 C)
 (8.99  10 N.m /C )
 9.0N
(0.10m) 2
9
2
2

F23  (F23x ,F23y )  (-9.0,0)N
F13  k e
q 2 q3

2a

2
(5.0  10 6 C)(5.0  10 6 C)
 (8.99  10 N.m /C )
 11N
2
2(0.10m)
9
2
2

F13  (F13x ,F13y )  (F13cos45,F13sin45 )
 (7.9,7.9)N



 F3  F13  F23  (1.1,7.9)N
Zero Resultant Force, Example

Where is the resultant
force equal to zero?




The magnitudes of the
individual forces will be
equal
Directions will be
opposite
Will result in a quadratic
Choose the root that
gives the forces in
opposite directions
Electrical Force with Other
Forces, Example
Ex 23.3


The spheres are in
equilibrium
Since they are separated,
they exert a repulsive force
on each other


Charges are like
particles
Proceed as usual with
equilibrium problems, noting
one force is an electrical
force
a  L sin θ

mg  0.29Nĵ
m1=m2=3.0ᵡ10-2kg
L=0.15m, θ=5.0°
q=?
예제 23.3 구의 전하량 구하기
질량이 각각3.0 ×10-2 kg이고 동일하게 대전된 두 개의 작은 구가 그림과 같이 평형
상태로 매달려 있다. 각 실의 길이는 0.15m이고 각도 θ는 5.0 °이다. 각 구의 전하량을
구하라.
F
풀이 (1)
(2)
x
F
y
 tanθ 
 T sin   Fe  0 T sin   Fe
 T cos  mg  0 T cos  mg
Fe
mg

Fe  mgtan
Fe  (3.0 102 kg)(9.80m / s 2 ) tan( 5.0)
 2.6 102 N
a
sin  
 a  L sin 
L
a  (0.15m) sin( 5.0)  0.013m
Fe  ke
q
2
r2
Fe r 2
Fe (2a) 2
 q

ke
ke
(2.6 10 2 N )[ 2(0.013m)]2
q
8.99 109 N .m 2 / C 2
 4.4 10 8 C
Electric Field – Introduction


The electric force is a field force
Field forces can act through space


The effect is produced even with no physical
contact between objects
Faraday developed the concept of a field in
terms of electric fields
Electric Field – Definition

An electric field is said to exist in the region
of space around a charged object


This charged object is the source charge
When another charged object, the test
charge, enters this electric field, an electric
force acts on it
Electric Field – Definition, cont


The electric field is defined as the electric
force on the test charge per unit charge
The electric field vector, E , at a point in space
is defined as the electric force F acting on a
positive test charge, qo placed at that point
divided by the test charge:
F
E
qo
Electric Field – Definition, cont
q1
q2

r10

r20
q3






F0  F10  F20  F30      Fi0       Fi0
q0

r30
i
q1q0
q2 q0
qi q0
 k 2 r̂10  k 2 r̂20       k 2 r̂i0
r10
r20
ri 0
i
qi

  
 q0  k 2 r̂i0
ri0  r0  ri , ri0  ri0
ri 0
i
qi


 
F0
qi
qi
E0 
  k 2 r̂i0   E i , E i  k 2 r̂i0
q0
ri 0
ri 0
i
i
E  (N/C)
Electric Field, Notes

E is the field produced by some charge or charge

distribution, separate from the test charge
The existence of an electric field is a property of the
source charge


The presence of the test charge is not necessary for the
field to exist
The test charge serves as a detector of the field



F0
qi
E0 
  k 2 r̂i0   E i
q0
ri 0
i
i
Electric Field Notes, Final




The direction of E is
that of the force on a
positive test charge
The SI units of E are
N/C
We can also say that
an electric field exists at
a point if a test charge
at that point
experiences an electric
force


F0
qi
E0 
  k 2 r̂i0
q0
ri 0
i
Relationship Between F and E

Fe  qE







F0
E0 
q0
This is valid for a point charge only
One of zero size
For larger objects, the field may vary over the size of the
object
If q is positive, the force and the field are in the
same direction
If q is negative, the force and the field are in
opposite directions
Electric Field, Vector Form

Remember Coulomb’s law, between the
source and test charges, can be expressed
as

qqo
Fe  ke 2 rˆ
r

Then, the electric field will be
Fe
q
E
 ke 2 rˆ
qo
r

F0
E0 
q0
qi
  k 2 r̂i0
ri 0
i
More About Electric

Field Direction E  F
qi
q
  k 2 r̂i0  k 2 r̂
q0
ri 0
r
i
0
0





a) q is positive, the force is
directed away from q
b) The direction of the field
is also away from the
positive source charge
c) q is negative, the force is
directed toward q
d) The field is also toward
the negative source charge
Use the active figure to
change the position of point
P and observe the electric
field
PLAY
ACTIVE FIGURE
Superposition with Electric
Fields

At any point P, the total electric field due to a
group of source charges equals the vector
sum of the electric fields of all the charges
qi
E  ke  2 rˆi
i ri


F0
qi
E0 
  k 2 r̂i0
q0
ri 0
i
Superposition Example



Find the electric field
due to q1, E1
Find the electric field
due to q2, E2
E  E1  E2


Remember, the fields
add as vectors
The direction of the
individual fields is the
direction of the force on a
positive test charge

a  b일때 E  k e
2qa
î
2
2 3/2
(a  y )

2qa
y  a일때 E  k e 3 î
y
Ex 23.4


E0   Ei
i
qi
  k 2 r̂i0
ri 0
i
|E1|=keq1/r12
 k e q1 /(a 2  y 2 )
=E(a,b,y,q1,q2)
|E2|=ke|q2|/r22
 k e q 2 /(b 2  y 2 )
예제 23.4 두 전하에 의한 전기장
그림과 같이 전하 q1과 q2가 x축 상에 있고, 원점에서부터 각각 거리 a와 b에 있다.
(A) y축에 있는 점 P에서 알짜 전기장 성분을 구하라.
풀이
(A)
E1  ke
E2  k e
E1  ke
E 2  ke
q1
r12
q2
r22
q1
(a  y )
2
2
q2
(b 2  y 2 )
q1
 ke
(a 2  y 2 )
 ke
q2
(b 2  y 2 )
cos i  ke
cos i  ke
q1
(a  y )
2
2
q2
(b 2  y 2 )
sin j
sin j
(1) E x  E1x  E2 x
 ke
q1
(a 2  y 2 )
(2) E y  E1 y  E2 y
cos   ke
q2
(b 2  y 2 )
cos 
 ke
q1
(a 2  y 2 )
sin   ke
q2
(b 2  y 2 )
sin 
예제 23.4 두 전하에 의한 전기장(계속)
(B) |q1|=|q2|와 a=b인 특별한 경우에 점 P에서 전기장을 구하라.
(C) 점 P가 원점으로부터 거리 y≫a일 때, 전기 쌍극자에 의한 전기장을 구하라.
풀이
q
q
cos


k
cos 
e
(a 2  y 2 )
(a 2  y 2 )
q
 2k e 2
cos 
(a  y 2 )
(B) (3) E x  ke
E y  ke
q
q
sin


k
sin 
e
(a 2  y 2 )
(a 2  y 2 )
0
(4) cos  
E x  2k e
(C)
E  ke
a
a
 2
2 1/ 2 이므로
r (a  y )
q
a
2qa

k
e
(a 2  y 2 ) (a 2  y 2 )1/ 2
(a 2  y 2 )3 / 2
2qa
y3


E0   Ei
Electric Field – Continuous
q
 k
Charge Distribution, equations
r
i
i

r̂i0
For the individual charge elements
q
E  ke 2 rˆ
r

i
2
i0


qi
q
E i0  k 2 r̂i0  E  k 2 r̂
ri 0
r

dq
 dE  k 2 r̂
r
Because the charge distribution is continuous

E  k lim
qi
dq
r̂i   k 2 r̂

2
q i 0
ri
r
i


dq
E   dE   k 2 r̂
r
Ex 23.5

dq
dE  k 2 r̂
r


dq
E   dE   k 2 r̂
r
λ≡Q/ℓ
dE  î dE x  î k e
E   dE  - î  dE x  -î
a l

a
dq
x2
dq
k e 2  -î k e 
x
a l

a
k eQ
dx

x 2 a(a  l )
Fig. 23-15, p. 656
예제 23.5 전하 막대에 의한 전기장
길이가 ℓ인 막대에 전체 양 전하 Q가 단위 길이당 전하 λ로 고르게 퍼져 있다. 막대의
긴축 한쪽 끝으로부터 a 만큼 떨어진 점 P에서 전기장을 구하라.
풀이
dE  ke
E
dq
dx

k
e
x2
x2
a
a
ke 
E  ke  
a
a
dx
x2
a
dx
 1

k

e 
2
x
 x  a
keQ
Q1
1 
(1) E  ke  

  a   a  a (  a )
Ex 23.6
dE x  k e
dq
cos 
2
r

dq
dE  k 2 r̂
r


dq
E   dE   k 2 r̂
r
ke x
E x   dE x  2
Q
2 3/ 2
(a  x )
Fig. 23-16, p. 657
예제 23.6 균일한 고리 전하에 의한 전기장
전체 양전하 Q가 반지름이 a인 고리에 균일하게 분포하고 있다. 고리 면에 수직인
중심축으로부터 x 만큼 떨어져 있는 점 P에서 고리에 의한 전기장을 구하라.
풀이
dq
dq
cos


k
cos 
e
2
2
2
r
(a  x )
x
x
cos   2 2 1/ 2 이므로
r (a  x )
(1) dEx  ke
dEx  ke
ke x
dq
x

dq
2
2
2
2 1/ 2
2
2 3/ 2
(a  x ) (a  x )
(a  x )
Ex  
ke x
ke x
dq

dq
2
2 3/ 2
2
2 3/ 2 
(a  x )
(a  x )
E
ke x
Q
2
2 3/ 2
(a  x )

dq
dE  k 2 r̂
r
ke x
dE x  2
dQ
2 3/ 2
(a  x )
Example – Charged Disk
Ex 23.7



The ring has a radius R
and a uniform charge
density σ
Choose dq as a ring of
radius r
The ring has a surface
area 2πr dr

E x  2ke 
2 0
ke x
R

x
dE x  2
(2

r
d
r)
(a  x 2 )3 / 2
R


rdr
x
E x   dE x  2k e x  2
 2k e 1  2
2 3/ 2
2 3/ 2 
(
r

x
)
(
R

x
) 

0
예제 23.7 균일한 원판 전하에 의한 전기장
균일한 표면 전하 밀도 σ를 갖는 반지름 R의 원판이 있다. 원판의 중심을 지나고 수직인
축 위의 점 P에서 전기장을 구하라.
풀이
dq  dA   (2r dr )  2r dr
원형고리와 같이 대칭성에 의해 중심축에 수평한 성분만
남으므로
dE x 
ke x
(2r dr )
(r 2  x 2 ) 3 / 2
E x  ke x 
R
0
2r dr
(r 2  x 2 )3 / 2
R
 ke x  (r 2  x 2 ) 3 / 2 d (r 2 )
0
R
 (r 2  x 2 ) 1/ 2 
 ke x 


1
/
2

0


x
 2ke 1  2
2 1/ 2 
 (R  x ) 
원판으로부터 가까운 축에서는(R ≫ x)
E x  2ke 

2 0

E
tangent to the electric field line at each point

E

E
Ex 23.8



  Fnet qE
Fnet  Fe , a 

m
m
a
qE
, v  2ad  v02
m
qE
2qEd
 2( )d 
m
m
일-에너지 정리
W=ΔK
1 2
2qEd
qEd  mv , v 
2
m
Fig. 23-23, p. 662
예제 23.8 양전하의 가속
거리 d 만큼 떨어지고 평행한 전하 판 사이에 균일한 전기장 E는 x축과 나란한 방향이다.
양전하 판에 가까운 점A에서 질량 m인 양의 점 전하 q를 정지 상태에서 가만히 놓으면,
이 양전하는 음전하 판 가까운 점 B쪽으로 가속도 운동을 한다.
(A) 입자가 일정한 가속도를 받고 있는 입자로 모형화하여 B점에서 입자의
속도를 구하라.
풀이
a
qE
m
이므로 등가속도 운동을 한다.
v 2f  vi2  2a( x f  xi )  0  2a(d  0)  2ad
vf 
2ad 
 qE 
2
d 
 m 
2qEd
m
(B) 에너지 관계식으로 속력을 구하시오.
Wnet  K or E  WNC
Electron in a Uniform Field,
Ex 23.9
Example



The electron is projected
horizontally into a uniform
electric field
The electron undergoes a
downward acceleration


 qE
qE
a
  ĵ
m
m
It is negative, so the
acceleration is opposite the
direction of the field
Its motion is parabolic
while between the plates
Use the active figure to
vary the field and the
characteristics of the
particle.

 qE
qE
(1.6 1019 C)(200N/C)
13
2
(A) a 
  ĵ



3
.
51

10
m/s
ĵ
-31
m
m
9.110 kg
(C) y  0
yf  ?
l
0.1m
8
(B) t  

3
.
33

10
s
6
v x 3 10 m/s
1
(C) y f   at 2  1.95cm
2
Fig. 23-24, p. 663
예제 23.9 전자의 가속
그림과 같이 E=200N/C인 균일한 전기장 영역으로, 전자가 처음 속력 vi =3.00 ×106
m/s으로 들어온다. 판의 수평 길이는 ℓ =0.100m이다.
(A) 전자가 전기장 안에 있는 동안, 가속도를 구하라.
풀이




(A) Fnet  qE  qE  ma

19
 qE
q
E
(
1
.
6

10
C )( 200 N/C )
a
 ˆj

m
m
9.1  10-31 kg
 3.51  1013 m/s 2ˆj
(B) 전자가 시각 t=0에 전기장 안으로 들어온다고 가정하고, 전자가 전기장을 떠나는
시간을 구하라.
x f  xi  vx t

t
x f  xi
vx
t
0
0.100m

 3.33 10 8 sec
6
vx
3.00 10 m / s
(C) 전자가 전기장 안으로 들어오는 수직 위치를 yi=0이라고 가정하고, 전자가 전기장을
떠날 때의 수직 위치를 구하라.
y f  yi  v yi t 
1
a yt 2
2
1
y f  0  0  (3.511013 m / s 2 )(3.33 10 8 s ) 2
2
 0.0195m  1.95cm
Related documents