Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 52, No. 22, 2008 ISSN 0735-1097/08/$34.00 doi:10.1016/j.jacc.2008.08.036 STATE-OF-THE-ART PAPER Resistant Hypertension An Overview of Evaluation and Treatment Pantelis A. Sarafidis, MD, PHD,* George L. Bakris, MD, FAHA, FASN† Thessaloniki, Greece; and Chicago, Illinois Resistant hypertension is defined as failure to achieve goal blood pressure (BP) when a patient adheres to the maximum tolerated doses of 3 antihypertensive drugs including a diuretic. Although the exact prevalence of resistant hypertension is currently unknown, indirect evidence from population studies and clinical trials suggests that it is a relatively common clinical problem. The prevalence of resistant hypertension is projected to increase, owing to the aging population and increasing trends in obesity, sleep apnea, and chronic kidney disease. Management of resistant hypertension must begin with a careful evaluation of the patient to confirm the diagnosis and exclude factors associated with “pseudo-resistance,” such as improper BP measurement technique, the white-coat effect, and poor patient adherence to life-style and/or antihypertensive medications. Education and reinforcement of life-style issues that affect BP, such as sodium restriction, reduction of alcohol intake, and weight loss if obese, are critical in treating resistant hypertension. Exclusion of preparations that contribute to true BP treatment resistance, such as nonsteroidal anti-inflammatory agents, cold preparations, and certain herbs, is also important. Lastly, BP control can only be achieved if an antihypertensive treatment regimen is used that focuses on the genesis of the hypertension. An example is volume overload, a common but unappreciated cause of treatment resistance. Use of the appropriate dose and type of diuretic provides a solution to overcome treatment resistance in this instance. (J Am Coll Cardiol 2008;52:1749–57) © 2008 by the American College of Cardiology Foundation Hypertension is the most common chronic disease in developed societies, affecting ⬎25% of adults (1). Metaanalyses have demonstrated a linear relationship between level of blood pressure (BP) and risk for cardiovascular events (2– 4). Suboptimal BP control is, consequently, the most common attributable risk for death worldwide, being responsible for 62% of cerebrovascular disease and 49% of ischemic heart disease as well as an estimated 7.1 million deaths a year (5). In the U.S., both the net and age-adjusted prevalence ratios of hypertension continue to increase. Recent data suggest, however, a slight improvement in hypertension awareness, treatment, and control (6). The rates of hypertension treatment and control in Europe are much lower than in the U.S. (7). Several large hypertension outcome trials also demonstrate a failure to achieve BP goals in spite of protocol-defined treatment regimens. In these trials, 20% to 35% of participants could not achieve BP control despite receiving ⬎3 antihypertensive medications (8 –10) (Fig. 1). From the *Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; and the †Hypertensive Diseases Unit, Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Pritzker School of Medicine, Chicago, Illinois. Manuscript received June 20, 2008; revised manuscript received August 18, 2008, accepted August 26, 2008. This article provides the clinician with an overview of the patient characteristics associated with resistant hypertension, the diagnostic evaluation to assess the problem, and the treatment strategies for optimizing BP control. Definition and Prevalence of Resistant Hypertension The Joint National Committee 7 defines resistant hypertension as failure to achieve goal BP (⬍140/90 mm Hg for the overall population and ⬍130/80 mm Hg for those with diabetes mellitus or chronic kidney disease) when a patient adheres to maximum tolerated doses of 3 antihypertensive drugs including a diuretic (11). This definition does not apply to patients who have been recently diagnosed with hypertension (12). Moreover, resistant hypertension is not synonymous with uncontrolled hypertension. The latter includes all hypertensive patients who lack BP control under treatment, namely, those receiving an inadequate treatment regimen, those with poor adherence, and those with undetected secondary hypertension, as well as those with true treatment resistance. By this definition, patients with resistant hypertension may achieve BP control with full doses of 4 or more antihypertensive medications (13,14). Although the definition of resistant hypertension is arbitrary relative to the number of antihypertensive medications required, the concept of resistant hypertension is focused on identifying 1750 Sarafidis and Bakris Resistant Hypertension patients who are at high risk of having reversible causes of hypertension and/or patients who, beACE ⴝ angiotensincause of persistently high BP levconverting enzyme els, may benefit from special ARB ⴝ angiotensindiagnostic or therapeutic considreceptor blocker erations (13). BP ⴝ blood pressure The prevalence of resistant hyCCB ⴝ calcium-channel pertension in the general popublocker lation is unknown because of an eGFR ⴝ estimated inadequate sample size of pubglomerular filtration rate lished studies as well as the feaERA ⴝ endothelin-receptor sibility of doing a large enough antagonist prospective study that would anNSAID ⴝ nonsteroidal antiinflammatory drug swer the question (15,16). Small studies, however, demonstrate a RAS ⴝ renin-angiotensin system prevalence of resistant hypertension that ranges from ⬇5% in general medical practice to ⬎50% in nephrology clinics (15). Based on data from the National Health And Nutrition Examination Survey, 2003 to 2004, 58% of people being treated for hypertension achieve BP levels ⬍140/90 mm Hg (6); control rates among those with diabetes mellitus or chronic kidney disease are ⬍40% (6,17). In Europe, the situation is worse, with control rates among treated hypertensive patients between 19% and 40% in 5 large countries (7). Such data suggest that resistant hypertension is more common than appreciated; however, accurate estimates are Abbreviations and Acronyms Figure 1 Percent of Patients Reaching JNC-7 BP Goals Percent of patients reaching the Joint National Committee 7 (JNC-7) blood pressure (BP) goals in the following trials: ACCOMPLISH (Avoiding Cardiovascular Events Through Combination Therapy in Patients Living With Systolic Hypertension): amlodipine plus benazepril versus benazepril plus hydrochlorothiazide (56); INVEST (International Verapamil-Trandolapril Study): verapamil versus atenolol (10); CONVINCE (Controlled Onset Verapamil Investigation of Cardiovascular End Points): verapamil versus atenolol (57); ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial): chlorthalidone versus lisinopril versus amlodipine (8); and LIFE (Losartan Intervention For Endpoint Reduction in Hypertension Study): losartan versus atenolol (9). Note that, in all of these trials, more than two-thirds of the patients were receiving at least 2 antihypertensive agents and about one-third were receiving 3 or more antihypertensive agents. JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 not possible, as control rates under treatment are affected by many factors. Prognosis of Resistant Hypertension There are no studies specifically powered to address the prognosis of persons with resistant hypertension. However, as evident from all population studies on hypertensionrelated target-organ damage, the risks of myocardial infarction, stroke, heart failure, and renal failure directly relate to the level of BP (3,11). These observations coupled with the most common comorbid conditions seen in patients with resistant hypertension, namely, obesity, diabetes, or chronic kidney disease, translate into an unfavorable prognosis if the BP goal is not achieved (13). The extent of cardiovascular morbidity and mortality reduction with achievement of the BP goal has not been evaluated; however, the benefits are evident by results of major outcome studies (2,11,18,19). Etiology of “Pseudo-Resistance” The term “pseudo-resistance” refers to lack of BP control with appropriate treatment in a patient who does not have resistant hypertension. Several factors contribute to elevated BP readings and produce the perception of resistant hypertension (12–16) (Table 1). Such factors include the following: 1) suboptimal BP measurement technique; 2) the white-coat effect; and 3) poor adherence to prescribed therapy and other causes described in the following text (13,14). A careful evaluation to exclude these factors before labeling someone as having resistant hypertension should be performed. Although guidelines to properly assess office BP are widely available (20), several common mistakes often produce falsely elevated BP readings. Such mistakes include not allowing the patient to sit quietly for adequate time, taking single instead of triple readings, using cuffs that are too small for the arm, recent smoking, and not fully supporting the arm at heart level (12,13,16). In older patients, the presence of heavily calcified or arteriosclerotic arteries that cannot be fully compressed is common and results in overestimation of intra-arterial BP (12,16). The “white-coat effect,” defined as an elevation of BP during a clinic visit resulting in higher office readings than at home or ambulatory BP readings (21), is another cause of pseudo-resistance. The white-coat effect is common among patients with perceived resistant hypertension; ⬇25% of such patients referred for resistant hypertension achieve goal BP under treatment when ambulatory measurements are performed (22). Patients with apparent resistant hypertension due to the white-coat effect have less target-organ damage compared with truly resistant hypertensive patients (23,24). Therefore, such patients should have home or ambulatory BP measurements (12). Poor adherence to an adequate antihypertensive regimen is another cause of apparent resistant hypertension. Studies Sarafidis and Bakris Resistant Hypertension JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 Causes of Pseudo-Resistant Hypertension Table 1 Causes of Pseudo-Resistant Hypertension Improper blood pressure measurement Heavily calcified or arteriosclerotic arteries that are difficult to compress (in elderly persons) White-coat effect Poor patient adherence Side effects of medication 1751 inertia may be due to lack of training and experience in the proper use of antihypertensive agents or an overestimation of care already provided (33). Several studies (34,35) suggest that this phenomenon is frequent among American physicians and represents an important culprit working against the efforts to improve hypertension control rates in the population. Complicated dosing schedules Poor relations between doctor and patient Inadequate patient education Identification and Reversal of Pseudo-Resistance Causes Memory or psychiatric problems Costs of medication Related to antihypertensive medication Inadequate doses Inappropriate combinations Physician inertia (failure to change or increase dose regimens when not at goal) suggest that up to 40% of newly diagnosed hypertensive patients will discontinue their antihypertensive medications during the first year, with only 40% of the remaining patients continuing their therapy over the next decade (25–27). An evaluation of 4,783 hypertensive patients enrolled in phase IV clinical studies, with follow-up ranging from 30 to 330 days, demonstrated a discontinuation rate of antihypertensive drug of ⬇50% within 1 year (28). Moreover, there was an inverse relationship between the likelihood of early treatment discontinuation and the frequency of the daily dosing regimen. Factors that improve medication adherence include the following: 1) selection of agents with low side effect profiles such as blockers of the reninangiotensin system (RAS); 2) avoidance of complicated dosing schedules so that once-daily agents either alone or in fixed dose would be preferred; 3) use of pill boxes or family to help patients with memory deficits or psychiatric disorders; and 4) improved communication between the patient and physician to ensure that the patient understands the regimen and why the medication should be taken in the way prescribed. Failing to educate the patient about the importance of achieving BP goals, the predicted side effects of the agents, and the cost of medication are the most common reasons for drug discontinuation (29,30). A relatively surprising cause of pseudo-resistant hypertension is suboptimal dosing of antihypertensive agents or inappropriate combinations of agents. Data from a clinical hypertension specialty clinic demonstrated that either increasing the dose or initiating or switching to the proper diuretic was the most common change that achieved BP goal among patient referred for resistant hypertension (31). An important culprit that contributes to the genesis of pseudo-resistant hypertension is clinical inertia, defined as the conscious decision by a clinician to not adequately treat a condition despite knowing that it is present (32). Despite efforts to translate evidence-based guidelines into clear recommendations for clinical practice (11), many physicians are reluctant to adhere to these guidelines (16). Clinical Reasonable algorithms to identify people with pseudoresistant hypertension have been proposed (12,13). In general, these approaches adopt a 2-step approach: first, confirmation of true resistance (by simultaneous recognition and correction of factors related to pseudo-resistance); and second, identification of the factors that contribute to treatment resistance in a given patient (Table 2). The first step to rule out resistant hypertension is confirmation of the diagnosis with reliable office BP readings; the observer should strictly follow the relevant BP measurement guidelines (20). Particular attention should be paid to the patient’s posture, environment, and triple BP readings with adequate intervals between. Additionally, use of appropriate cuffs and devices is mandatory. Adherence to the recomFactors Contributing to Resistant Hypertension Table 2 Factors Contributing to Resistant Hypertension Drug-induced Nonsteroidal anti-inflammatory drugs (including cyclo-oxygenase-2 inhibitors) Sympathomimetics (decongestants, anorectics) Cocaine, amphetamines, other illicit drugs Oral contraceptive hormones Adrenal steroid hormones Erythropoietin Cyclosporine and tacrolimus Licorice (included in some chewing tobacco) Over-the-counter dietary and herbal supplements (e.g., ginseng, yohimbine, ma huang, bitter orange) Excess alcohol intake Volume overload Excess sodium intake Volume retention from kidney disease Inadequate diuretic therapy Associated conditions Obesity Diabetes mellitus Older age Identifiable causes of hypertension Renal parenchymal disease Renovascular disease Primary aldosteronism Obstructive sleep apnea Pheochromocytoma Cushing’s syndrome Thyroid diseases Aortic coarctation Intracranial tumors 1752 Sarafidis and Bakris Resistant Hypertension mended BP measurement technique will uncover patients who do not meet the definition of resistant hypertension. Identification of patients who have the white-coat effect is also important. Either having qualified nonphysician personnel (i.e., nurses) perform office measurements or using an automated device with the patient alone in the room is useful. Of greater importance, however, is the determination of BP levels under treatment with home or ambulatory measurements, again following relevant recommendations (20,36). If BP remains elevated after this evaluation, patient adherence to therapy should be evaluated, as noted earlier. Factors Contributing to Resistant Hypertension Apart from the aforementioned variables, a number of biological or life-style factors can contribute to the development of resistant hypertension. Several classes of pharmacological agents can produce transient or persistent increases in BP (37) (Table 3). Nonsteroidal antiinflammatory drugs (NSAIDs) are a common cause of worsening BP control. They increase BP by an average of 5 mm Hg, in part because of inhibition of renal prostaglandin production decreases in renal blood flow, followed by sodium and fluid retention (38). They also interfere with BP-lowering of all antihypertensive drug classes except Step-by-Step Management Resistant Hypertension Physician of Patients Guide Appearing for Evaluation to Have and Table 3 Step-by-Step Physician Guide for Evaluation and Management of Patients Appearing to Have Resistant Hypertension A. Become familiar with and adhere to the most recent hypertension guidelines. B. Identify and reverse “pseudo-resistance.” 1. Perform proper measurements of BP in the office, following the relevant guidelines, to confirm the diagnosis of resistant hypertension. 2. Exclude the “white-coat effect” with the use of home or ambulatory BP measurements. 3. Evaluate patient’s adherence to the treatment regimens; in case of poor adherence, determine the causes of it. Educate the patient on the risks of uncontrolled hypertension and the benefits of drug treatment and motivate the patient to work toward an appropriate BP goal. 4. Closely follow-up nonadherent patients to ensure their compliance. C. Identify and reverse factors contributing to true resistance. 1. Specifically ask the patient about use of any pharmacological agents that may increase BP; in case of identification of such a substance, discontinue or minimize its use. 2. Evaluate the amount of alcohol intake and counsel the patient on the benefits of ceasing alcohol consumption. 3. Perform a reliable evaluation of dietary salt intake and recommend sodium restriction to ⬍100 mmol (2.4 g) per day. 4. Assess the degree of obesity, abdominal obesity, and physical activity and recommend weight reduction and regular aerobic exercise (at least 30 min/ day, most days of the week). 5. Evaluate the level of renal function with estimation of glomerular filtration rate and modify treatment accordingly. 6. Perform a thorough search for secondary hypertension; if an identifiable cause is present, treat accordingly or refer the patient to a hypertension center. D. Treat aggressively with optimal doses of appropriate antihypertensive medications (including drug combinations) according to patient characteristics. E. Refer the patient to a hypertension specialist if BP control is not achieved. BP ⫽ blood pressure. JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 calcium antagonists (39,40). The effect of NSAIDs on BP is more pronounced in patients with reduced kidney function (13). Selective cyclo-oxygenase-2 inhibitors have effects similar to those of NSAIDs on BP control (41). Sympathomimetic agents (nasal decongestants, anorectic pills, cocaine, amphetamine-like stimulants), oral contraceptives, glucocorticoids, anabolic steroids, erythropoietin, and cyclosporine are also commonly used agents that can interfere with BP control. Black licorice, included in some oral tobacco products, and herbal supplements (e.g., ma huang and ginseng), also raise BP (12,13,16). The effect of these agents varies; most people manifest little or no effect, but certain persons may experience severe BP elevations. Lastly, illicit drugs can be a major unappreciated cause of resistant hypertension. Agents such as steroids and cocaine are common causes of resistant hypertension. Although modest alcohol consumption does not generally increase BP, larger amounts (3 or more drinks/day) have a dose-related effect on BP, both in hypertensive and normotensive persons (11). Alcohol intake in all hypertensive patients should be limited to no more than 1 oz of ethanol a day in most men (the equivalent of 2 drinks) and 0.5 oz of ethanol a day in women and lower-weight persons (11). A key factor responsible for many cases of resistant hypertension is excess dietary salt intake leading to volume overload (16). Data from small studies demonstrate that 90% of patients with resistant hypertension have expanded plasma volume (42). Excessive dietary sodium intake is widespread in the U.S. and other developed countries, with processed foods being the most common source (13,16). The majority of patients with resistant hypertension have higher salt intake than the general population, with an average dietary sodium intake exceeding 10 g/day (43). The optimal way to assess sodium intake is to measure sodium excretion in a 24-h urine collection. Dietary salt reduction to ⬍3 g/day is associated with modest BP reductions, which are larger in African-American and elderly patients (44). Current guidelines suggest that dietary sodium for a hypertensive person should be ⬍100 mmol/ day (2.4 g sodium or 6 g sodium chloride) (11). This guidance is applicable to all patients with resistant hypertension, whereas for salt-sensitive patients, even lower amounts of sodium may be necessary. Perhaps the most common unappreciated medical cause of resistant hypertension is the presence of renal parenchymal disease. Kidney disease is the most common secondary medical cause of hypertension. Failure to appreciate this relationship may lead to less than optimal choices of antihypertensive agents such as failure to use appropriately dosed or selected diuretics based on kidney function. This lack of diuretic use has been shown in referral practices to be the primary cause of resistant hypertension, with the use of these agents helping to achieve BP goals (31). Obesity is also a very common feature of patients with resistant hypertension (45,46). The mechanisms by which obesity contributes to BP elevation and interferes with BP JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 control are complex and not fully understood. Insulin resistance and hyperinsulinemia, impaired sodium excretion, increased sympathetic nervous system activity, increases in aldosterone sensitivity related to visceral adiposity, and obstructive sleep apnea have all been implicated as potential causes (47– 49). Weight loss achieved with both an appropriate exercise program and a reduced calorie diet is associated with modest BP reductions in obese hypertensive patients (12,13). These reductions are greater in patients already receiving antihypertensive therapy (50). Increasing age, namely, ⬎65 years old, is associated with a higher prevalence of resistant hypertension (16,51). Increasing age is associated with a higher prevalence of arterial stiffening, which is not only responsible for falsely elevated systolic BP readings but also a major cause of true elevations (11,16). Current guidelines for systolic BP goals of ⬍140 mm Hg are more difficult to achieve in patients with isolated systolic hypertension (11) and are more difficult with increasing age because of the natural history of arteriosclerosis. Finally, in patients with resistant hypertension, the presence of secondary hypertension must be considered; although its prevalence is largely unknown, previous studies have shown that ⬇5% to 10% of patients with resistant hypertension have an identifiable cause (52,53). As already mentioned, renal parenchymal disease must be considered with the strict sense as the most common medical cause of secondary hypertension (12,16). Renal arterial disease, primary aldosteronism, and obstructive sleep apnea are other common identifiable causes, whereas less common forms of secondary hypertension include pheochromocytoma, Cushing’s syndrome, hyperparathyroidism and hypoparathyroidism, aortic coarctation, and intracranial tumors (Table 3). The possibility of an identifiable cause of hypertension increases with age: renal disease, sleep apnea, and possibly primary aldosteronism are more prevalent among older patients (13,54). Patients with documented resistant hypertension should be evaluated for secondary hypertension if indicated by clinical and routine laboratory evaluation (11). Description of the signs and symptoms, diagnostic procedures, and treatment of identifiable causes of hypertension is beyond the scope of this article (13). Pharmacological Treatment of Resistant Hypertension Suboptimal dosing regimens or inappropriate antihypertensive drug combinations are the most common causes of resistant hypertension (52,53). Recommendations on the modification and intensification of antihypertensive regimens for a given patient taking 3 or more drugs is based on pharmacological principles in the context of the underlying pathophysiology that portends hypertension, clinical experience, and available treatment guidelines. The present rationale for intervention in resistant hypertension (Fig. 2) is to ensure that all possible mechanisms for Sarafidis and Bakris Resistant Hypertension 1753 BP elevation are blocked. As volume expansion seems the most frequent pathogenic finding in these patients (42,55), an appropriate diuretic to decrease volume overload remains a cornerstone of therapy (12,16,56). Studies suggest that changes in diuretic therapy (adding a diuretic, increasing the dose, or changing the diuretic class based on kidney function) will help ⬎60% of these patients achieve BP goals (12,42,53,55–57). Thiazide diuretics are effective from doses of 12.5 mg/day given that kidney function is normal; increases up to 50 mg may provide additional BP reduction in some patients (12). Of note, there are differences between thiazide and thiazide-type diuretics (13,14,58). A recent trial comparing hydrochlorothiazide 50 mg and chlorthalidone 25 mg daily demonstrated that the latter provided greater ambulatory BP reduction, with the largest difference occurring overnight (59). Additionally, a small study of patients with resistant hypertension demonstrated that switching from the same dose of hydrochlorothiazide to chlorthalidone resulted in an additional 8 mm Hg drop in systolic BP and increased the number of subjects at goal (60). Unfortunately, chlorthalidone is not commonly available in fixed-dose combinations; therefore, its use will require separate prescriptions. The most crucial part of diuretic therapy is to know when kidney function has deteriorated, so that one may select the proper class of diuretic. For thiazides, this deterioration is generally thought to have occurred when the estimated glomerular filtration rate (eGFR) falls to ⬍50 ml/min/1.73 m2; chlorthalidone can still be effective to an eGFR of ⬇40 ml/min/1.73 m2 if hypoalbuminemia or hyperkalemia is not present. For patients with eGFR ⬍40 ml/min/1.73 m2, a loop diuretic should be used (12,13,16). Furosemide or bumetanide must be given twice daily, and possibly thrice daily in some cases, as they have short durations of action of 3 to 6 h. Thus, once-daily use is associated with intermittent natriuresis and consequent reactive sodium retention mediated by increases in the RAS (12,16,61). The loop diuretic torsemide has a longer duration of action and may be given once or twice daily (12). Use of the other drug classes in patients with resistant hypertension should be based on the general principles of combination therapy, namely, inhibition of different pathogenic mechanisms, choice of drugs that will compensate for possible pathophysiological changes evoked by the first drug, and consideration of compelling indications (11,12). Moreover, the Food and Drug Administration has recently approved 3 fixed-dose combination antihypertensive agents for use as first-line therapy (62). These combinations all have an agent that blocks the RAS. Fixed-dose antihypertensive combinations are also very useful for patients with resistant hypertension, especially for those with adherence problems (63,64). Ultimately, patient characteristics (age, probable pathogenic mechanisms involved, and concomitant diseases) will determine the best combination of agents needed to achieve BP goal. In general, most patients should be on a blocker of 1754 Figure 2 Sarafidis and Bakris Resistant Hypertension JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 An Approach to Achieving BP Goal in Resistant Hypertension *Refers to chlorthalidone as the diuretic preferred by the guidelines, namely, thiazide-like. **Vasodilating beta-blockers such as carvedilol and nebivolol have fewer side effects than traditional beta-blockers such as atenolol, and also have outcome data on heart disease; therefore, they are suggested for better patient adherence. ¶Refers to physicians who are board-certified clinical hypertension specialists. BP ⫽ blood pressure; CCB ⫽ calcium-channel blocker; CKD ⫽ chronic kidney disease; RAS ⫽ renin-angiotensin system. the RAS along with a calcium antagonist and an appropriately dosed diuretic. In this case, the physician must ensure that these agents are prescribed in full dosages, especially for patients with increased weight, and for appropriate time intervals. If BP remains above goal, the next step is to add a fourth agent; a vasodilating beta-blocker is a good choice if pulse rate is not too low. Peripheral alpha-blockers are well tolerated and can be used if the beta-blocker selected does not have alpha-blocking activity. For true resistant hypertension, there are also good data to support adding a complementary calcium antagonist to a regimen including a RAS blocker, diuretic, and calciumchannel blocker (CCB); for example, adding long-acting diltiazem to nifedipine XL. Such a combination of complementary CCBs results in additive BP reduction with a low side effect profile and makes pharmacological sense (65,66). Combining an angiotensin-converting enzyme (ACE) inhibitor with an angiotensin receptor blocker (ARB) does not make sense as it was recently shown to be less effective in terms of BP reduction than was adding a diuretic or a CCB to an ARB (67), was shown not to reduce cardiovascular or renal events to any greater extent than individual agents, and may confer increased risk of side effects (68,69). In a separate trial, the combination of a renin inhibitor (aliskiren) with an ARB was also associated with a small additional BP drop (70). Thus, dual RAS blockade is not recommended for patients with resistant hypertension. Aldosterone is also part of the RAS, and specific blockade of aldosterone should be considered in certain settings. Recent studies suggest that adding spironolactone or eplerenone to existing antihypertensive regimens for patients with resistant hypertension who are obese or have sleep apnea provides significant BP reduction (13,71). For 76 patients with uncontrolled BP taking an average of 4 antihypertensive medications, the addition of spironolactone (12.5 to 25 mg daily) resulted in an average 25/12 mm Hg reduction after 6 months (72). Reductions in BP were similar in patients with and without primary aldosteronism and were not predicted by baseline plasma or 24-h urinary aldosterone, plasma renin activity, or plasma aldosterone/ renin ratio. These data were confirmed by a recent report of 1,411 participants in the Anglo-Scandinavian Cardiac Outcomes Trial—Blood Pressure Lowering Arm who were unselected for plasma aldosterone and renin activity (73) and who received spironolactone as a fourth-line antihypertensive agent for uncontrolled BP in addition to an average Sarafidis and Bakris Resistant Hypertension JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 of 3 drugs. Use of spironolactone resulted in a BP drop of 21.9/9.5 mm Hg that was unaffected by age, sex, smoking, and diabetic status. Breast tenderness with spironolactone is common at doses above 25 mg/day but can be avoided with the use of the more selective mineralocorticoid receptor antagonist, epleronone (14). Epleronone also has demonstrated BP-lowering efficacy as well as benefits on kidney disease progression (74). Amiloride is another potassium-sparing diuretic associated with BP reductions in patients with resistant hypertension (75). When physicians prescribe these agents, especially in combination with an ACE inhibitor or an ARB, they should monitor potassium levels closely if kidney function is not within the normal range, and educate the patient to avoid food and supplements rich in potassium, as hyperkalemia is a potentially dangerous side effect (14,76). If BP control is still not achieved with full doses of a 4-drug combination, use of other agents such as centrallyacting alpha-agonists (methyldopa and clonidine) or vasodilators (hydralazine or minoxidil) is needed. These agents are very effective for lowering BP, but have poor tolerability and lack of positive outcome data (11). It must be noted, however, that if therapy has progressed to adding a fourth agent, referral to a clinical hypertension specialist is warranted (33). Another class of agents that may prove useful for resistant hypertension is endothelin-receptor antagonists (ERAs). In patients with mild-to-moderate essential hypertension, both nonselective and selective (type A receptor) ERAs produce BP reductions comparable to those of common antihypertensive agents (77), but concerns about adverse events precluded their use as a treatment option for uncomplicated hypertension (78). However, darusentan, a selective ERA recently tested in 115 patients with resistant hypertension, demonstrated a dose-dependent decrease in BP. The largest reductions (11.5/6.3 mm Hg) were observed after 10 weeks of follow-up with the largest dose, and the drug was generally well tolerated (78). Ongoing phase III clinical trials with such agents are awaited to provide further information in this interesting field. Conclusions Although the number of patients who cannot achieve BP goals on a regimen of multiple medications is growing, the phenomenon of resistant hypertension is widely understudied, a fact that requires treatment recommendations be based on pathophysiological principles and clinical experience. Effective management of resistant hypertension requires, first, a careful examination for and exclusion of factors associated with pseudo-resistance, and second, identification and, when possible, modification of factors related to true BP elevations. After all of these are successfully managed, an aggressive treatment regimen designed to compensate for all mechanisms of BP elevation in a given patient, most importantly to control volume overload with 1755 proper use of diuretics, will help in moving toward effective BP control for the majority of patients. Reprint requests and correspondence: Dr. George L. Bakris, Hypertensive Diseases Unit, University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637. E-mail: [email protected]. REFERENCES 1. Wolf-Maier K, Cooper RS, Banegas JR, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003;289:2363–9. 2. Turnbull F, Neal B, Ninomiya T, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ 2008;336: 1121–3. 3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360:1903–13. 4. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225–32. 5. World Health Organization. World Health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva, Switzerland: World Health Organization, 2002. 6. Ong KL, Cheung BM, Man YB, Lau CP, Lam KS. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999 –2004. Hypertension 2007;49:69 –75. 7. Wolf-Maier K, Cooper RS, Kramer H, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004;43:10 –7. 8. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002;288:2981–97. 9. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003. 10. Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA 2003;290:2805–16. 11. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003;42:1206 –52. 12. Moser M, Setaro JF. Clinical practice. Resistant or difficult-to-control hypertension. N Engl J Med 2006;355:385–92. 13. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 2008;117: e510 –26. 14. Pimenta E, Gaddam KK, Oparil S. Mechanisms and treatment of resistant hypertension. J Clin Hypertens (Greenwich) 2008;10: 239 – 44. 15. Kaplan NM. Resistant hypertension. J Hypertens 2005;23:1441– 4. 16. Sarafidis PA, Bakris GL. State of hypertension management in the United States: confluence of risk factors and the prevalence of resistant hypertension. J Clin Hypertens (Greenwich) 2008;10:130 –9. 17. Sarafidis PA, Li S, Chen SC, et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med 2008;121: 332– 40. 18. K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004;43: 1–290. 1756 Sarafidis and Bakris Resistant Hypertension 19. Mancia G, Messerli F, Bakris G, Zhou Q, Champion A, Pepine CJ. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension 2007; 50:299 –305. 20. Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood pressure measurement in humans and experimental animals. Part 1: blood pressure measurement in humans. A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005;111:697–716. 21. Verdecchia P, Schillaci G, Borgioni C, et al. White coat hypertension and white coat effect. Similarities and differences. Am J Hypertens 1995;8:790 – 8. 22. Brown MA, Buddle ML, Martin A. Is resistant hypertension really resistant? Am J Hypertens 2001;14:1263–9. 23. Redon J, Campos C, Narciso ML, Rodicio JL, Pascual JM, Ruilope LM. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension 1998; 31:712– 8. 24. Pierdomenico SD, Lapenna D, Bucci A, et al. Cardiovascular outcome in treated hypertensive patients with responder, masked, false resistant, and true resistant hypertension. Am J Hypertens 2005;18:1422– 8. 25. Caro JJ, Salas M, Speckman JL, Raggio G, Jackson JD. Persistence with treatment for hypertension in actual practice. CMAJ 1999;160: 31–7. 26. Mazzaglia G, Mantovani LG, Sturkenboom MC, et al. Patterns of persistence with antihypertensive medications in newly diagnosed hypertensive patients in Italy: a retrospective cohort study in primary care. J Hypertens 2005;23:2093–100. 27. Van Wijk BL, Klungel OH, Heerdink ER, de Boer A. Rate and determinants of 10-year persistence with antihypertensive drugs. J Hypertens 2005;23:2101–7. 28. Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M. Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ 2008;336:1114 –7. 29. Haynes R, Yao X, Degani A, et al. Interventions to enhance medication adherence. Cochrane Database Syst Rev 2005;CD000011. 30. Takiya LN, Peterson AM, Finley RS. Meta-analysis of interventions for medication adherence to antihypertensives. Ann Pharmacother 2004;38:1617–24. 31. Singer GM, Izhar M, Black HR. Goal-oriented hypertension management: translating clinical trials to practice. Hypertension 2002;40: 464 –9. 32. Phillips LS, Branch WT, Cook CB, et al. Clinical inertia. Ann Intern Med 2001;135:825–34. 33. Trewet CL, Ernst ME. Resistant hypertension: identifying causes and optimizing treatment regimens. South Med J 2008;101:166 –73. 34. Hyman DJ, Pavlik VN. Self-reported hypertension treatment practices among primary care physicians: blood pressure thresholds, drug choices, and the role of guidelines and evidence-based medicine. Arch Intern Med 2000;160:2281– 6. 35. Oliveria SA, Lapuerta P, McCarthy BD, L’Italien GJ, Berlowitz DR, Asch SM. Physician-related barriers to the effective management of uncontrolled hypertension. Arch Intern Med 2002;162:413–20. 36. O’Brien E, Asmar R, Beilin L, et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens 2005;23:697–701. 37. Grossman E, Messerli FH. Secondary hypertension: interfering substances. J Clin Hypertens (Greenwich) 2008;10:556 – 66. 38. Johnson AG, Nguyen TV, Day RO. Do nonsteroidal antiinflammatory drugs affect blood pressure? A meta-analysis. Ann Intern Med 1994;121:289 –300. 39. Conlin PR, Moore TJ, Swartz SL, et al. Effect of indomethacin on blood pressure lowering by captopril and losartan in hypertensive patients. Hypertension 2000;36:461–5. 40. Bakris GL, Kern SR. Renal dysfunction resulting from NSAIDs. Am Fam Physician 1989;40:199 –204. 41. Whelton A, White WB, Bello AE, Puma JA, Fort JG. Effects of celecoxib and rofecoxib on blood pressure and edema in patients ⬎ or ⫽ 65 years of age with systemic hypertension and osteoarthritis. Am J Cardiol 2002;90:959 – 63. 42. Graves JW, Bloomfield RL, Buckalew VM Jr. Plasma volume in resistant hypertension: guide to pathophysiology and therapy. Am J Med Sci 1989;298:361–5. JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 43. Nishizaka MK, Pratt-Ubunama M, Zaman MA, Cofield S, Calhoun DA. Validity of plasma aldosterone-to-renin activity ratio in African American and white subjects with resistant hypertension. Am J Hypertens 2005;18:805–12. 44. Vollmer WM, Sacks FM, Ard J, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med 2001;135:1019 –28. 45. Bramlage P, Pittrow D, Wittchen HU, et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am J Hypertens 2004;17:904 –10. 46. Cushman WC, Ford CE, Cutler JA, et al. Success and predictors of blood pressure control in diverse North American settings: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Clin Hypertens (Greenwich) 2002;4:393– 404. 47. Morris MJ. Cardiovascular and metabolic effects of obesity. Clin Exp Pharmacol Physiol 2008;35:416 –9. 48. Sarafidis PA. Obesity, insulin resistance and kidney disease risk: insights into the relationship. Curr Opin Nephrol Hypertens 2008;17: 450 – 6. 49. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat Clin Pract Cardiovasc Med 2007;4:436 – 43. 50. Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension 2005;45: 1035– 41. 51. Calhoun DA, Zaman MA, Nishizaka MK. Resistant hypertension. Curr Hypertens Rep 2002;4:221– 8. 52. Yakovlevitch M, Black HR. Resistant hypertension in a tertiary care clinic. Arch Intern Med 1991;151:1786 –92. 53. Garg JP, Elliott WJ, Folker A, Izhar M, Black HR. Resistant hypertension revisited: a comparison of two university-based cohorts. Am J Hypertens 2005;18:619 –26. 54. Anderson GH Jr., Blakeman N, Streeten DH. The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients. J Hypertens 1994;12:609 –15. 55. Taler SJ, Textor SC, Augustine JE. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension 2002;39: 982– 8. 56. Jamerson K, Bakris GL, Dahlof B, et al. Exceptional early blood pressure control rates: the ACCOMPLISH trial. Blood Press 2007; 16:80 – 6. 57. Black HR, Elliott WJ, Grandits G, et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA 2003;289:2073– 82. 58. Handler J. Maximizing diuretic therapy in resistant hypertension. J Clin Hypertens (Greenwich) 2007;9:802– 6. 59. Ernst ME, Carter BL, Goerdt CJ, et al. Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure. Hypertension 2006;47:352– 8. 60. Khosla N, Chua DY, Elliott WJ, Bakris GL. Are chlorthalidone and hydrochlorothiazide equivalent blood-pressure-lowering medications? J Clin Hypertens (Greenwich) 2005;7:354 – 6. 61. Sarafidis PA. Proteinuria: natural course, prognostic implications and therapeutic considerations. Minerva Med 2007;98:693–711. 62. Medical News Today. FDA approves first combination therapy for initial use in patients with moderate to severe hypertension. Available at: http://www.medicalnewstoday.com/articles/89340.php. Accessed August 15, 2008. 63. Khanna A, Lefkowitz L, White WB. Evaluation of recent fixed-dose combination therapies in the management of hypertension. Curr Opin Nephrol Hypertens 2008;17:477– 83. 64. Dickson M, Plauschinat CA. Racial differences in medication compliance and healthcare utilization among hypertensive Medicaid recipients: fixed-dose vs free-combination treatment. Ethn Dis 2008;18: 204 –9. 65. Saseen JJ, Carter BL, Brown TE, Elliott WJ, Black HR. Comparison of nifedipine alone and with diltiazem or verapamil in hypertension. Hypertension 1996;28:109 –14. 66. Gashti CN, Bakris GL. The role of calcium antagonists in chronic kidney disease. Curr Opin Nephrol Hypertens 2004;13:155– 61. 67. Stergiou GS, Makris T, Papavasiliou M, Efstathiou S, Manolis A. Comparison of antihypertensive effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist and a diuretic in patients with JACC Vol. 52, No. 22, 2008 November 25, 2008:1749–57 68. 69. 70. 71. 72. 73. hypertension not controlled by angiotensin receptor blocker monotherapy. J Hypertens 2005;23:883–9. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547–59. Mann JF, Schmieder R, McQueen M, et al. Renal outcomes with telmisartan, ramipril, or both in people at high vascular risk: results from a multicenter, randomised, double-blind, controlled trial. Lancet 2008;372:547–53. Oparil S, Yarows SA, Patel S, Fang H, Zhang J, Satlin A. Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomised, double-blind trial. Lancet 2007;370:221–9. Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest 2007;131:453–9. Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 2003;16:925–30. Chapman N, Dobson J, Wilson S, et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 2007;49:839 – 45. Sarafidis and Bakris Resistant Hypertension 1757 74. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 2003;108:1831– 8. 75. Eide IK, Torjesen PA, Drolsum A, Babovic A, Lilledahl NP. Low-renin status in therapy-resistant hypertension: a clue to efficient treatment. J Hypertens 2004;22:2217–26. 76. Calhoun DA. Resistant or difficult-to-treat hypertension. J Clin Hypertens (Greenwich) 2006;8:181– 6. 77. Nakov R, Pfarr E, Eberle S. Darusentan: an effective endothelin A receptor antagonist for treatment of hypertension. Am J Hypertens 2002;15:583–9. 78. Black HR, Bakris GL, Weber MA, et al. Efficacy and safety of darusentan in patients with resistant hypertension: results from a randomized, double-blind, placebo-controlled dose-ranging study. J Clin Hypertens (Greenwich) 2007;9:760 –9. Key Words: resistant hypertension y management y evaluation y treatment.