Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
www.LionTutors.com STAT200(Shook)–Exam3–PracticeExamSolutions 1. C–Aconfidenceintervalusesthesampledatatoestimateapopulation parameter. 2. A–Tofindtheprobabilitythataz-scoreisgreaterthan2,youwouldneedto findtheareatotherightof2underthestandardnormalcurve(thezdistribution). 3. B–32/52 Probabilityofblackcard=26/52 Probabilityofredfacecard=6/52 *Theproblemasksfortheprobabilityofablackcard,afacecard(J,Q,orK), orboth.Theprobabilityofablackfacecardisincludedintheprobabilityof gettingablackcard.However,youalsoneedtoaccountforthefactthatthere are6redfacecards(J,Q,K(Hearts)andJ,Q,K(Diamonds). Totalprobabilityofeitherorboth=(26/52)+(6/52)=32/52 4. B–2.5 E(X)=np=(5)(0.50)=2.5 NotethattheexpectedvaluedoesnothavetobeapossiblevalueofX. Therefore,youdonotneedtoround2.5to3. 5. D–0.9826,yousimplyneedtolookupthez-scoreof2.11inthestandard normaltablebecauseyouarelookingfortheareatotheleftofthez-score. 6. D–80% P(AorC)=P(A)+P(C)–P(AandC) P(AandC)=0becauseAandCareindependenteventssoitisnotpossibleto picktwotypesofshoes P(AorC)=50%+30%–0%=80% 7. B–21/52 Spades=13cards 3to5non-spade=9cards Totalcards=21 Probability=21/52 8. B–0.60 P(X³2)=0.45+0.10+0.05=0.60 9. A–Acensussurveyseveryoneinthepopulationsotheresultingvaluefrom thesurveyisapopulationparameter. 10. B–Discreterandomvariablebecausethenumberoffootballgamesattended hasacountablelistofpossibleoutcomes. 11. D–Thenumberofquestionsyouwouldgetcorrectonamultiplechoicetest ifyourandomlyguessedonallquestions.Eachquestioniseithercorrector incorrect,andyouhavethesameprobabilityofgettingeachquestioncorrect orincorrectbecauseyouarerandomlyguessingoneachquestion. 12. A–0.0174 P(Z≥2.11)=1–0.9826=0.0174 13. B–0.75 P(A|B)=P(AandB)/P(B) However,wedon’tknowP(AandB)sowewillneedtosolveforitfirst. P(AorB)=P(A)+P(B)–P(AandB) 0.95=0.8+0.6–P(AandB) P(AandB)=0.45 P(A|B)=P(AandB)/P(B) P(A|B)=0.45/0.6=0.75 14. A–True P(B|C)=P(BandC)/P(C) Sincetheeventsaremutuallyexclusive,P(BandC)=0,whichmeans P(B|C)=0. 15. B–Astatisticcanhaveonlyasinglevalueoncethepopulationisdefinedis falsebecausedifferentsamplesfromthesamepopulationcanhavedifferent samplestatistics. 16. A–Independentsamplesbecausetwocompletelyseparategroupsarebeing used. 17. D–0.85 0.15+0.25+0.45=0.85 18. B–Falsebecauseeventsbeingindependentdoesnotmakethemmutually exclusive.Forexample,SammakingthebaseballteamandSallymakingthe basketballteamareindependenteventsbecauseonehasnoeffectonthe other.Eventhoughtheseeventsareindependent,theyaren’tmutually exclusivebecauseSamcouldmakeitonthebaseballteamandSallycould alsomakeitonthebasketballteamatthesametime. 19. B–Thenumberoftimesa‘2’isrolledwhenthedieisrolledfivetimesis binomialbecauseithasasetnumberoftrials(n=5),asuccess(rollinga‘2’) andfailure(rollinganythingelse),andthetrialsareindependentwitha constantprobabilityofsuccess(p=1/6). 20. C–Tofindtheareabetween-2and2,youwouldneedtosubtracttheareato theleftof-2fromtheareatotheleftof2underthestandardnormalcurve (z-distribution). 21. C–EatingatChipotleandlivingoncampusaremutuallyexclusiveisfalse becauseitispossibletobothliveoncampusandeatatChipotle. P(AorB)=P(A)+P(B)–P(AandB) P(AorB)=40%+25%–10%=55% 22. A–Continuousrandomvariablebecausetheoutcomecouldbeanywhere withinarangeofvalues.Itisalwayspossibletotakeamoreprecise measurementoftime. 23. C–0.7531 P(Z≤–1.1)=1–0.8643=0.1357 P(Z≤1.22)=0.8888 P(–1.1≤Z≤1.22)=0.8888–0.1357=0.7531 24. A–0.99 Specificity=100%-1%=99%=0.99 25. C–0.999 Sensitivity=100%-0.1%=99.9%=0.999 26. B–Binomialbecausethisvariablemeetseachofthebinomialvariable conditionscoveredinchapter8. 27. B–Continuousrandomvariable 28. B–3/8 Forthisproblem,youneedtothinkaboutallpossibleoutcomesofflipping thecointhreetimes. H,H,H H,H,T H,T,H T,H,H H,T,T T,H,T T,T,H T,T,T Wecanseethatthereare8possibleoutcomesfromflippingacointhree times.Threeofthoseoutcomesincludegettingheadsexactlyonetime. 3/8=0.375 29. A–P(X = 2) = (∗*∗+∗, ((∗*)((∗*) ∗ ( * + ( (1 − ),/* + n=4 k=2 p=1/3 P(X = k) = 𝑛! 𝑝5 (1 − 𝑝)6/5 𝑘! (𝑛 − 𝑘)! 1∗2∗3∗4 1 P(X = 2) = ∗ (1 ∗ 2)(1 ∗ 2) 3 P(X = 2) = * 1 (1 − ),/* 3 24 8 = 81 27 30. B–DandEbecausetheyaretheonlyrowswheretheprobabilitiesaddupto 100%,andtheydon’tincludeanynegativevalues.Probabilitiescanneverbe negativevalues.Theymusthaveavaluebetween0and1,whichisthesame asbetween0%and100%. 31. D–μbecausethisproblemdealswithasinglemean. 32. C–0.62 Totalparticipants=100 Totalmale=25+20+10=55 P(Male)=55/100=0.55 Totalgraduate=10+7=17 P(Grad)=17/100=0.17 Malegraduates=10 P(MaleandGrad)=10/100=0.10 P(AorB)=P(A)+P(B)–P(AandB) P(MaleorGrad)=P(Male)+P(Grad)–P(MaleandGrad) P(MaleorGrad)=0.55+0.17–0.10=0.62 33. A–Normal 34. B–False P(AandB)=P(A)*P(B) P(AandB)=0.4*0.2=0.08 35. A–Independentbecauseonegroup’sactionsdonotaffecttheothergroup’s actions. 36. C–172.35to197.65 s.e.(𝑥)=s/ 𝑛 s.e.(𝑥)=40/ 10 s.e.(𝑥)=12.65 68%ofvaluesfallwithinonestandarderrorofthemean. 185±12.65=(172.35to197.65) 37. D–159.70to210.30 s.e.(𝑥)=s/ 𝑛 s.e.(𝑥)=40/ 10 s.e.(𝑥)=12.65 95%ofvaluesfallwithintwostandarddeviationofthemean. 185±(2)12.65=(159.70to210.30) 38. E–1becauseHomeronlypurchasedfourboxessothereisa100%hewill find4orlessninjathrowingstars. 39. A–12% WewanttoknowP(DisciplineandCollege)...sowecanuseourequationfor P(AandB). P(DisciplineandCollege)=P(Discipline)*P(College)=0.30*0.40=0.12 40. D–54% We just found that P(Discipline and College) = 0.12. Next we need to solve for P(No Discipline and College) using the same approach. P(No discipline and College) = P(No Discipline) * P(College) = 0.70 * 0.60 = 0.42. Now we can use the equation P(A or B) = P(A) + P(B) - P(A and B) You want to think of A as No discipline and college and B as Discipline and College. If we define A and B this way they are mutually exclusive events since it is not possible to have no discipline and to have discipline. That means that the P(A and B) = 0 because the events are mutually exclusive. So that means P(A or B) = 0.42 + 0.12 – 0 = 0.54 41. D–AandBarenotmutuallyexclusive,andtheyarenotindependent.Thisis becausebotheventshavethecommonvalueof4. 42. B–AmongallMacBookowners,theprobabilityofselectingajunior. 43. A–Amongalljuniors,theprobabilityofselectingaMacBookowner. 44. B–0.30/0.40 P(S|B)=P(SandB)/P(B) P(S|B)=0.30/0.40 45. A–0.1 P(AandB)=P(A)+P(B)–P(AorB) P(AandB)=0.4+0.3–0.6 P(AandB)=0.1 46. A–0.300 Total#ingroup=60+90+150+100+70+30=500 StudentwhouseTwitterandhave6ormoreclasses=150 Probability=150/500=0.30 47. C–0.200 TotalTwitterusers=60+90+150=300 Twitteruserswith4orlessclasses=60 Probability=60/300=0.20 48. C–pbecausetheproblemdealswithproportions. 49. D–70%ofmenwhodonothavetesticularcancerwilltestnegative 50. B–Itisreasonabletoconcludethereisadifferencebetweengenders becausetheconfidenceintervalsdonotoverlap. 51. D–Oneminusspecificity.Specificityisfoundbytakingoneminusthe probabilityofafalsepositive.Thustheprobabilityofafalsepositiveisone minusspecificity. 52. D–Theprobabilityofanegativetestresultwhenyoudonothavethe disease. 53. B–(4425+4428–4200)/4685.Wehavetosubtract4200oncebecausethe valueisincludedinboththetotalthatactuallyhavethediseaseandthetotal ofnegativeresults.Ifwedon’tsubtractit,wewillbecountingthevaluetwice. 54. D–28/260.Thenumberofpeoplewhohavethediseasebutgetanegative resultdividedbythetotalnumberofpeoplewhoactuallyhavethedisease. 55. C–Neitherbecausethisisadiscrete,waitingtimevariable. 56. D–12/16.Since,theproblemisaskingforthecumulativedistribution functionyouwanttofindP(X≤2)soyouaddtheprobabilitiesfrom0,1,and 2. 57. A–1/16.Youknowtheprobabilitiesofalloftheoutcomesmustaddupto 100%.Ifyouadduptheprobabilitiesfor0,1,2,and3,youwillget15/16.So theunknownprobabilitymuchbe1/16. 58. B–1.2 E(X)=6(0.2)=1.2 59. C–3.1 E(X)=1(0.15)+2(0.10)+3(0.30)+4(0.40)+5(0.05)=3.1 60. C–0.25becauseyouaddtheprobabilitiesfor1and2becauseitwantsto knowabouttheprobabilityfor2fightsorless. 61. B–Discrete 62. C–Findthecumulativeprobabilityof6successesforabinomialvariable withn=10andp=¼.Youknowyouwantthecumulativeprobability becausetheproblemasksabout6orfewer.Iftheproblemhadaskedforthe probabilityofgettingexactly6correct,thenanswerEwouldhavebeen correct. 63. D–No,thenumberoftrialsisnotfixed. 64. B–Negative1 x=25 μ=30 σ=5 z=(25–30)/5=–1 65. A–2 x=40 μ=30 σ=5 z=(40–30)/5=2 66. A–0.6915 x=75 μ=70 σ=10 z=(75–70)/10=0.5 Lookup0.50instandardnormaltable=0.6915 TheproblemaskedfortheproportionofstudentswhoscoredLOWERthan CassidysowealooingforP(Z≤0.50),whichis0.6915. 67. B–(1–0.6915) x=75 μ=70 σ=10 z=(75–70)/10=0.5 Lookup0.50instandardnormaltable=0.6915 TheproblemaskedfortheproportionofstudentswhoscoredHIGHERthan CassidysowealooingforP(Z>0.50),whichis1–0.6915. 68. B–(1–0.9332) x=55 μ=70 σ=10 z=(55–70)/10=–1.5 Ourstandardnormaltableonlyincludespositivezvaluessowewillneedto lookup1.50instandardnormaltable=0.9332 Thevaluewefoundinthestandardnormaltable,0.9332,istheP(Z<1.50). However,wewanttofindP(Z<–1.50).Sincethenormaldistributionis perfectlysymmetric,weknowtheareatotherightof1.50isthesamething astheareatotheleftof–1.50. P(Z<–1.50)=1–0.9332 69. A–0.9332 x=55 μ=70 σ=10 z=(55–70)/10=–1.5 Ourstandardnormaltableonlyincludespositivezvaluessowewillneedto lookup1.50instandardnormaltable=0.9332 Thevaluewefoundinthestandardnormaltable,0.9332,istheP(Z<1.50). However,wewanttofindP(Z>–1.50).Sincethenormaldistributionis perfectlysymmetric,weknowtheareatotheleftof1.50isthesamethingas theareatotherightof–1.50. P(Z>–1.50)=0.9332 70. B–Astatisticcanhaveonlyasinglevalueoncethepopulationisdefinedis falsebecauseeachsampletakenfromthesamepopulationcanhavea differentstatistic. 71. C–Apopulationparameterhasacorrespondingsamplingdistributionis falsebecausesamplestatisticshavesamplingdistributions,notpopulation parameters. 72. B–Mutuallyexclusive(disjointed)eventsbecausethetwoeventscannot happenatthesametimeandtheycovertheentiresamplespace.Theevents arenotindependentbecauseifyouknowthetutorisfemale,itchangesthe probabilitythatthetutorismaleto0%. 73. B–Mutuallyexclusive(disjointed)eventsbecausethetwoeventscannot happenatthesametimeandtheycovertheentiresamplespace.Theevents arenotindependentbecauseifyouknowthetutorisfemale,itchangesthe probabilitythatthetutorisKennyto0%. 74. A–Theprobabilitythatthetestisnegativewhenthepersondoeshavethe disease.Itisonlypossibletohaveafalsenegativeresultifyoudohavethe disease.Ifyouhaveadisease,youwilleithergetacorrectresultthatyou havethedisease,oryouwillgetafalsenegativesayingyoudonothavethe disease. 75. D–μ=themeanamountspentonalcoholbyallfinancemajors 76. B–Pairedsamplesbecauseeachsetoftwinsisamatchedpair. 77. D–665 Thefirstthingtodoisdeterminethez-scorethatcorrespondstothe95th percentile.Youdothisbylookingup0.9500inthemiddleofthez-table.You willseethat0.9500isn’tlistedonthez-table;however,wecanseethatit fallsbetween1.64and1.65sowearegoingtouse1.645asourz-score.You wouldstillbeabletofindthecorrectanswerusing1.64or1.65.Thismeans thevaluewearesolvingforwillbe1.645standarddeviationsabovethe mean. Standarddeviation=100 100x1.645=164.5 Thismeansthatthe95thpercentilewillbe164.5pointsabovethemeanof 500. 95thpercentile=500+164.5=664.5 78. B–0.18.Makesuretolookatthewordingofthisproblemcarefully.90isthe numberofpeopleoutof500thatrecognizedtheDJ’sname;however,that isn’twhattheproblemisaskingfor.Itwantsthemeanofthesampling distributionforthesampleproportionofpeoplewhoknewtheDJ’sname, whichis0.18. 79. B–Thenumberofstudentstallerthan6ftinarandomsampleof5students becauseitistheonlyanswerchoicethatmeetsalloftherequirementsfora binomialexperiment. 80. A–Independentsamplesbecausetherearetwocompletelyseparate samples. 81. B–Pairedsamplebecausewearelookingatthedifferencebetweentheright andleftindexfingersonthesameindividual.